Efficient Representation of Sound Images: Recent Developments in Parametric Coding of Spatial Audio

Jürgen Herre
Fraunhofer Institut für Integrierte Schaltungen (IIS)
Erlangen, Germany
Introduction: Sound Images ... ?

- Humans live in a world of sound
- ... continuously listen to the sound surrounding us
- ... perceive the acoustic waves reaching the ears and interpret them
- ... (re)construct an acoustic scene
- In analogy to visual perception, we form a "sound image" . . .

This talk: How to efficiently represent and reproduce sound images!
Overview

Part I
• What constitutes a “sound image”?

Part II
• Efficient coding of spatial sound images
 – Perceptual audio coding
 – Coding of multi-channel / surround sound
 – “Spatial Audio Coding” & MPEG Surround

Part III
• Next-generation interactive coding / rendering of sound images:
 “Spatial Audio Object Coding”
 – Demonstration
Part I:

What Constitutes A “Sound Image”?
Spatial Sound Perception

The Physics Part

• We are permanently listening to sound through our two sensors (ears)

• Ears receive a complex sound mixture of
 – direct sound that is radiated from several sources (frequently concurrently), and
 – many reflections from our acoustic environment ("ambient sound")
Spatial Sound Perception (2)

The Perceptual Part

• Humans interpret sound to make sense of it
 – Map it to an internal sound scene which is a *perceptual correlate* of the actual physical scene (not necessarily identical!)
 – Very complex & sophisticated process - by far not fully understood!

Some Key Words

• Psychoacoustics [Zwicker, Moore, Fletcher, Blauert, …]
• Perceptual streaming, auditory scene analysis [Bregman, …]
 – How to form a consistent interpretation of the acoustic world from the stream of received information fragments
Spatial Sound Perception (3)

A Note of Caution

- In the following, we will look at the phenomenon of spatial audio perception in a grossly simplified, yet illustrative and very useful way ...

- Allows immediate technical application to efficient coding of spatial sound

- Highlight some analogies between "sound images" and "visual images"

Frequency Selectivity

- The Human Auditory System processes sound in a frequency selective way (roughly logarithmic, ca. 1/3 octave \(\rightarrow \) BARK and ERB scales)
Spatial Sound Perception (4)

Sound Localization

- Complex process, mostly driven by interaural signal differences
- Depending on its position, a sound source produces differences in the ear signals
- Most important perceptual cues contained in the ear signals: e.g. [Blauert 1984]
 - Interaural Level Differences (ILD)
 - Interaural Phase/Time Differences (IPD/ITD) (relevant up to ca. 4 kHz frequency)
 - Temporal signal envelope (high frequencies)

⇒ ILD, IPD/ITD determine perceived *lateral position* of sound sources!
Spatial Sound Perception (5)

• In realistic closed rooms, reflections from the walls (and other objects) occur

• These blur the simple ILD, IPD/ITD relations by *decorrelating* the ear signals

⇒ Decorrelated sound at the two ears represents reflections and thus provides information on the *acoustic environment*
 – Distinct early reflections → nearby walls
 – Late reverberation → statistical summary of acoustic environment / room properties

⇒ Auditory system needs to “parse” sound into direct & ambient sound!
Spatial Sound Perception (6)

- Important role of Interaural Coherence (IC): Determines spatial extent (=width) of sound event [Schuijers03] [Faller03]

- Perceived width of auditory event increases as coherence decreases (1 → 4); eventually separates into 2 distinct events

- Max. of normalized cross-correlation:

\[
IC = \max_d \left| \sum_{n=-\infty}^{\infty} e_1(n) \cdot e_2(n + d) \right| \\
\sqrt{ \sum_{n=-\infty}^{\infty} e_1^2(n) \cdot \sum_{n=-\infty}^{\infty} e_2^2(n + d) }
\]

⇒ Key to source width and source/ambience perception!
Some A↔V Analogies in Scene Attributes

Visual Domain
- Foreground object
- Object position
- Object size
- Background

Auditory Domain (→ auditory cues)
- Sound sources (→ high IC) - directional
- Object position (→ ILD/ITD/IPD for lat. position)
- Object size (→ IC)
- Ambience (→ low IC) - non-directional
Part II:

Efficient Coding Of Spatial Sound Images
Basics of Audio Coding

Goal
• Represent audio data as compactly as possible while maintaining sound quality (ideally: “transparent” coding)

Predominant Approach
• Concept of perceptual audio coding
 – Optimize subjective quality rather than objective distortion metrics (e.g. MSE/SNR)
 – Use knowledge about signal receiver: Psychoacoustics gives limits of perception
 – Keep coding distortion below limits!
 – No universal source model available (unlike in speech coding)
Psychoacoustics

![Psychoacoustic Graph]

The graph illustrates the relationship between the threshold of hearing in quiet and the masking threshold. The x-axis represents frequency (kHz), and the y-axis represents intensity (dB). The graph shows how the presence of a masker sound affects the detection of an inaudible signal.
Demonstration: The "13 dB Miracle"

Historic demonstration by James D. Johnston and Karlheinz Brandenburg at AT&T Bell Laboratories in 1990 using the best psychoacoustic model available at that time ...

- Original signal
- Original + white noise, $\text{SNR} = 13,6$ dB
- Original + noise at threshold, $\text{SNR} = 13,6$ dB
- Difference signal: White noise
- Difference signal: Noise at threshold

⇒ SNR does not adequately describe subjective sound quality!
⇒ Putting psychoacoustics to work makes a huge difference!
Basic Paradigm of (Monophonic) Perceptual Audio Coding

audio in
Analysis Filterbank
Quantization & Coding
Encoding of Bitstream

Perceptual Model

bitstream out

Inverse Quantization
Synthesis Filterbank

bitstream in
Decoding of Bitstream
Inverse Quantization

audio out

Fraunhofer Institut Integrierte Schaltungen
A Real Audio Coder (MPEG-2 AAC, 1997)

- Input time signal
- Intensity/Coupling
- Bitstream
- Multiplexer
- Perceptual Model
- Gain Control
- Filter Bank
- TNS
- Prediction
- M/S
- Rate/Distortion Control
- Noiseless Coding
- Quant.
- Scale Factors
- Rate/Distortion Control
- Output
The Better Spatial Sound Image:
Surround Sound / Multi-Channel Audio

- Significantly increased spatial realism over stereo, envelopment
- Origins in movie sound (5.1); now also for music, broadcasting
- Increasingly adopted in consumers’ homes
Traditional Delivery Formats For Surround Sound

Matrixed Surround
(Prologic, Neo6, …)

- Downmix of 5.1 sound into stereo signal, upmix at the receiver side
 - Efficient in terms of transmission bandwidth (same bitrate as stereo)
 - Backward compatible to stereo delivery
 - Limited computation necessary
 - *Significant loss in subjective audio quality*

Discrete Surround
(AAC, AC-3, …)

- Separate transmission of each channel
 - *Significantly higher bitrate than stereo*
 - Moderate amount of computation
 - High subjective audio quality possible
A Major Step Ahead: “Spatial Audio Coding”

- Rather recent development

Main Characteristics

- **Compression efficiency:** Transmits multi-channel audio at bitrates used for 2-channel stereo (or even mono)
- **Backward compatibility:** SAC multi-channel audio is coded in a backward compatible way \(\Rightarrow \) existing infrastructures can be seamlessly upgraded to multi-channel / surround!
- **High subjective audio quality**

Heavily based on exploiting perception rather than waveform coding!
The Spatial Audio Coding (SAC) Concept

“Spatial Audio Coding” = Downmix + Parametric Spatial Synthesis

Extracts & reproduces *Inter-Channel* Counterparts of *Inter-Aural* Parameters
Related Technology

Generalization / Extension of

- **Binaural Cue Coding**
 Parametric Coding of Multi-Channel into a Mono Channel

- **Parametric Stereo**
 Parametric Coding of 2-Channel Stereo into a Mono Channel

- **Matrix Surround**
 (Dolby Prologic, Logic 7, Circle Surround …)

First commercial Application (2003)

- **MP3 Surround**
 Backward compatible extension of stereo MP3 towards 5.1 surround sound at 128 - 192kbit/s
Example: MP3 Surround Encoding

Principle: Surround → Stereo + Side Information

[Herre et al. 2004]
Example: MP3 Surround Decoding

Principle: Stereo + Side Information → Surround

[Herre et al. 2004]
MPEG Spatial Audio Coding / MPEG Surround

- Work item “Spatial Audio Coding” (SAC)
- Main contributors: Fraunhofer IIS, Agere Systems, Coding Technologies and Philips
- Renamed into MPEG Surround (MPEG-D)

Applications:

- Efficient & backward compatible upgrade of audio distribution to multi-channel, e.g.:
 - Music download service
 - Multi-channel streaming / Internet radio
 - Digital audio broadcasting
MPEG Surround Synthesis: General Concept

Decoder Structure

- "hybrid" = QMF filterbank + 2nd stage → non-uniform frequency resolution relating to frequency resolution of human auditory system
- Same QMF filterbank as in MPEG-4 HE-AAC (AAC + SBR)
MPEG Surround Synthesis: General Concept (2)

• Frequency selective processing: Dynamic matrix + decorrelation

• Many more details, please see dedicated publications!

• Side information rate typ. 3 - 32 kbit/s
Underlying Idea: Hierarchical En/decoding

Encoder

“5-2-5 Coding”

Decoder

Spatial parameters

OTT encoder element

OTT encoder element

OTT encoder element

Spatial parameters

OTT decoder element

OTT decoder element

OTT decoder element

OTT decoder element

Spatial parameters
MPEG Surround Concepts

Generalization
• Similar trees for mono-based operation (“5-1-5”), other modes (“7-2-7”, “7-5-7”) …

Spatial Parameters
• Channel Level Differences (CLDs)
• Inter-Channel Correlations (ICCs)
• Channel Prediction Coefficients (CPCs)
• Prediction errors (residuals)

Other Aspects
• Decorrelation by QMF-domain all-pass filters
• Several tools for handling fine temporal envelope structure (both without and with additional side information)
MPEG Surround: Additional Functionalities

Artistic Downmix
- Externally created downmixes can be used

Matrix Surround Compatibility
- Stereo downmix can be made compatible with common matrix surround decoders

Enhanced Matrix Mode
- MPEG Surround decoder can decode matrix surround signal (i.e. work without side info)

Binaural Rendering for headphones
- Downmix can be generated as virtual surround, or MPEG Surround can be decoded directly into virtual surround very efficiently

⇒ Rich set of attractive features for practical application
"Music-Store" test scenario: Stereo downmix coded using AAC@160kbit
Part III:

Next Generation Interactive Coding / Rendering of Sound Images

From *Spatial Audio Coding* to *Spatial Audio Object Coding*
Classic MPEG-4 Interactive Scene Composition (1996ff)

Scene is composed of multiple A/V objects and can be rendered interactively
Discrete approach comes at a rather high price:
• Bitrate and decoding complexity grow with number of objects
• Structural complexity
From Spatial Audio Coding (SAC) to SAOC

Regular Spatial Audio Coding: *Channel-oriented* scheme
(MPEG Surround)
From SAC to SAOC (2)

Alternative: *Object-oriented* Spatial Audio Coding

- Processes **object signals** instead of **channel signals**
- “Mixing”/rendering parameters vary according to user interaction
- Combined obj. decoding & rendering ⇒ computationally efficient!
- Previous work by Faller & Baumgarte [2001ff] and Faller [2006]
Real-time interactive rendering of audio objects from a mono audio downmix + SAOC side information
New MPEG Standardization Activities

- Work on “Spatial Audio Object Coding” (SAOC) started
- Transcoding approach: “SAOC” + rendering info → MPEG Surround

- Reference model and working draft recently established (10/2007)
Conclusions

• “Sound Images” carry some analogy to images in the visual world

• Spatial Audio Coding schemes code surround sound based on perception (rather than on waveform match)
 – “Object positions” are represented by perceptual spatial parameters
 – “Audio Object Texture” is coded using regular mono/stereo coder

• Such schemes can bring surround sound into existing infrastructures
 – High compression factor (surround sound at 64kbps and below!)
 – Stereo / mono backward compatibility

• Extension towards efficient interactive, object-based scene coding / rendering (Spatial Audio Object Coding) is currently on its way …
Thank You For Your Attention!