H.264/AVC and Its Extensions:

How Close is this Family?

Anthony Vetro Mitsubishi Electric Research Labs Cambridge, USA

(avetro@merl.com)

PCS 2007 – Plenary Talk

Coding Efficiency Is King

 H.264/AVC satisfies a fundamental need in digital video systems

High coding efficiency

Percentage bit-rate relative to MPEG-2 (at 32 dB)

Additional Design Features

- Network friendliness
 - Enabled through NAL design
- Error resilience
 - Data partitioning, FMO, slices, redundant slices, resynchronization markers, multiple reference pictures, parameter sets, etc.
- Temporal scalability
 - Enabled by flexible reference picture management via hierarchical predictions

Commercial Deployments

- Optical Storage
 HD-DVD, Blu-Ray Disc
- Television Broadcast
 - Cable, Satellite, Terrestrial
 - Telco IPTV
 - Mobile TV
- Streaming
- Video Conferencing
- Portable Media Players
- Video Game Consoles

Number of One-Seg Devices (Japan)

AVC Tools & Profiles

What Role do Extensions Play?

- Extensions broaden the functionality and capabilities of the base spec
 - Wide range of potential
 - Targeted application domains
 - Enable new services

- Obstacles
 - Complexity, performance
 - System constraints, business factors
 - Sometimes difficult to get traction

(need extensive follow up in industry consortia)

The Current Family

Objectives This Morning

- Cursory overview of H.264/AVC extensions
 Professional, Scalable, Multiview
- Analysis of coding tools, concepts and performance across various extensions
- Do these extensions have what it takes to succeed? What other factors exist?
- What's on the horizon...

Professional Extensions

Professional Quality Video

- Key applications
 - Professional studio
 - Digital cinema
 - Super HD imaging systems
 - Medical applications

- Technical requirements
 - High coding efficiency (HD bit rates > 150Mbps)
 - High dynamic range (typically up to 14 bits/pixel)
 - Mainly to keep the signal fidelity during various encoding/decoding iterations
 - Random access (essential for content editing)
 - Low complexity (algorithm and implementation)
 - Cover 4:2:2 and 4:4:4 color sampling structures
 - 4:4:4 can represent different color spaces (RGB, YUV, ...)

Common & Independent Modes

Common Mode

- Use existing coding architecture and tools
 - Single set of MB-level coding parameters, e.g., MB types, prediction modes, MVs, etc.
 - Minimizes syntax changes and algorithm complexity
- Residual signals for each color plane coded using same "luma" coding

Independent Mode

- Separate, independent coding of each color plane
 - Each color plane coded with monochrome coding tools
 - Enhanced parallel processing capability
- Adaptive MB-level coding parameters for each color
 - Flexible prediction by adapting to local signal statistics of each color

Analysis of Coding Modes

[Sekiguchi, et al., ICIP 2006]

4:4:4 Coding Performance

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

4:4:4 Coding Performance

Professional Profiles

Scalable Video Coding (SVC)

Scalable Video Coding

- Traditional Dimensions of Scalability
 - Temporal, Spatial, SNR

Encode once, decoding many

- Key technical challenges
 - Coding Efficiency: min loss wrt single layer coding
 - <u>Complexity</u>: solution must not incur substantial increase

SVC Applications

- Robust Video Delivery
 - Adaptive delivery over error-prone networks and to devices with varying capability
 - Combine with unequal error protection
 - Guarantee base layer delivery
 - Internet/mobile transmission
- Scalable Storage
 - Scalable export of video content
 - Graceful expiration or deletion
 - Surveillance DVR's and Home PVR's
- Enhancement Services
 - Upgrade delivery from 1080i/720p to 1080p
 - DTV broadcasting, optical storage devices

SVC Competition

- Simplest solution
- Code each layer as an independent stream
- Incurs increase of rate
- Stream Switching
 - Viable for some application scenarios
 - Lacks flexibility within the network
 - Requires more storage/complexity at server
- Transcoding
 - Low cost, designed for specific application needs
 - Already deployed in many application domains

High Rate

Low Rate

Relevant SVC Technologies

- Wavelet-based
 - Typically, a critically sampled decomposition (but not always)
 - Filters designed for perfect reconstruction, high coding efficiency
 - Aliasing often included in decimated image problems for video:
 - Motion compensated prediction could become more difficult
 - Temporal artifacts may result from truncation of higher subbands
 - Solution for JPEG 2000 and adopted for Digital Cinema applications
- Image pyramid
 - An oversampled representation, amenable to the traditional block-based coding schemes
 - Down-sampling filters designed for high visual quality of decimated pictures
 - Scalable extension of H.264/AVC employs layered block-based (image pyramid) approach

Temporal Scalability

- Achieved using hierarchical prediction structures
 - Possible due to flexible reference picture management in H.264/AVC design
 - Many configurations possible with varying delay, picture buffer requirements, non-dyadic structures
- No loss in coding efficiency
 - Hierarchical prediction structures improve coding performance!
 - Quantizer selection for each temporal layer is important

Improved Coding with Hierarchical B

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Visual Comparison at 33.5 dB

Hierarchical B (N=16)

Conventional IBP

201 kbps

310 kbps

Spatial Scalability

- Similar approach as in past standards
 Multi-layered coding of each spatial scale
- Each spatial layer
 - MC prediction
 - Inter-layer prediction

- Combined spatial/temporal scalability
 - Possible since lower layer pictures need not be present in every access unit (time instant)

Spatial Scalability

- Options for inter-layer prediction
 - Prediction of intra MBs (upsample intra MBs in ref layer)
 - Inter-layer motion prediction (infer MB info from ref layer)
 - Residual prediction (upsample residual from ref layer)
- Single-loop decoding
 - A central concept in SVC
 - Constrained inter-layer prediction
 - Do not allow inter-layer prediction based on MC reconstruction in reference layer
 - MC only needed for MBs at target decode/display resolution (hence only need to store pictures from target layer)
 - Substantial reduction in complexity compared to multi-loop decoding (as required in past standards)
 - Relatively small increase in decoder complexity over single layer decoding

Coding Performance

Sample Dyadic Test Results for Spatial Scalability

[Segall & Sullivan, T-CSVT, Sept'07]

- 10~15% gains over simulcast
- Performs within 10% of single layer coding

SNR Scalability

CGS (coarse grain)

- Discrete set of rate points for each layer
 - Same as spatial scalability, but w/out upsampling
 - Use inter-layer prediction
- Texture refinement
 - Requantization of residual
 - Finer quantization step with increasing layer
- Suitable for select number of rate points
 - Coding efficiency reduces with too many CGS layers

MGS (medium grain)

- Successive refinement of quality within a layer
 - Code fragments of transform coefficients
 - Allows graceful degradation
- Switching between layers
 - Possible in any access unit
 - Predict from base: control drift due to packet loss
 - Predict from enhancement: improve coding efficiency
 - Key picture concept to signal whether base or enhancement used for prediction

CGS/MGS Coding Performance

[Schwarz, et al. T-CSVT, Sept'07]

SVC Profiles

New Scalability Dimension

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Potential Applications

- Next Generation Optical Disc
 - Consumer displays will become more capable, e.g., 10 bits/pixel output
 - HD-DVD and Blu-Ray may consider supporting both legacy displays as well as advanced displays
- Post-Production
 - Already use 10/12/14 bit video
 - Provide compatibility with broadcast/DVD stream
- Other (Medical, Satellite, etc.)
 - Most content is captured using 16 bits sensors
 - Need efficient way to store and process HDR video, but display conventional 8-bit video

Technical Objectives

- High compression efficiency for video with bitdepths greater than 8 bits/pixel
- Scalable compression architecture
 - Retains HDR for storage, processing and advanced display
 - Enables simple access to 8-bit format for conventional display

Reference Architecture

Motion compensation in base layer only

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Technical Issues

- Architecture
 - E.g., determine if motion compensated prediction in enhancement layer useful - follow CGS architecture
- Combined scalability
 - Efficiently achieving bit-depth and spatial scalability
 - A three-layer scalable hierarchy is one possibility (base → spatial enhancement → bit-depth enhancement)
- Inter-layer prediction
 - Inverse tone mapping: predict original 10-bit video pictures from 8-bit tone mapped pictures
 - Global vs local operators

Coding Performance (10/8-bit)

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Remarks on Bit-Depth Scalability

- Still very much a work in progress...
 - Beginning to look at 12 bit videos
 - Base layer sequences with spatially varying tone mappings applied
 - Applications and requirements need further clarification
- Coding Tools
 - Fits neatly within SVC framework
- Compatibility with professional profiles
 - Chroma format scalability (e.g., 4:4:4 to 4:2:0)
 - Relation with common and independent modes

Multiview Video Coding (MVC)

Multiview Video

Coding of N views

(N in / N out)

- Key Applications
 - Free Viewpoint Video
 - 3D Video
- Substantial redundancy between camera views
 - Need to cope with color/illumination mismatch problems
 - Alignment may not always be perfect either

Prediction Structures

- Prediction structures exploit inter-camera redundancy
 - Trade-off in memory, delay, computation and coding efficiency

Performance Bounds & Coding Schemes

- Theoretical performance bounds on compression of multiview video have been derived
 - Function of temporal GOP size and number of cameras jointly considered by encoder
- Coding schemes to exploit interview similarities
 - Predictive Coding: use disparity compensated prediction
 - Subband Coding: rely on adaptive subband decomposition (e.g., disparity-compensated lifted wavelets)
- Standardization efforts focused on predictive coding scheme

[Flierl & Girod, IEEE SPM, Nov'07]

Coding Efficiency: Multiview Extension of H.264/AVC

Sample comparison of simulcast with inter-view prediction (majority of gains due to inter-view prediction at I-picture locations) Ballroom

Compatibility of MVC Extension

- Current multiview extension of H.264/AVC does not require <u>any</u> changes to lower-level syntax
 - Very compatible with single-layer AVC hardware
- Inter-view prediction
 - Enabled through flexible design of decoded reference picture management
 - Allow decoded pictures from other views to be inserted and removed from reference picture buffer
- Small changes to high-level syntax
 - E.g., specify view dependency

Proposals for New Coding Tools

- Illumination Compensation

 Incorporates illumination change into MC process
- Adaptive Reference Filtering
 - Compensate for focus mismatches between views
- Motion skip mode
 - Infer motion info from corresponding block in neighboring view
 - Similar in concept to inter-layer motion prediction of SVC
 - Concept of single-loop decoding being studied
- View Synthesis Prediction
 - Generate synthesized view from neighboring views using estimated depth, then use synthesized view for prediction
- All would require changes to slice/MB level
 - Additional 10-15% gains could be expected

The Road Ahead

Definitions of Success

- Technical success
 - Were the design goals achieved?
 - Substantial advance forward over the state-of-the-art?

- Business success
 - Were products deployed?
 - New markets, large profits?

Professional Extensions

- History of use in professional domains (broadcast studio)
 - AVC products employing 4:2:2 profiles already available
 - 4:4:4 products will be available and deployed within a few years
- Trend towards consumer applications for 4:4:4 (near future)
 - High quality video for Blu-Ray and HD-DVD
 - Future DTV broadcasting services

What is happening with SVC?

- Technically, the standard is a great success
- Industry appears to be open towards embracing SVC for DTV broadcast services
 - Specifically, enhancement of 720p to 1080p
- Others might be less certain, but still possible...
 - SVC for video conferencing equipment
 - Talk of using SVC for surveillance recorders
 - Lots of discussion on Scalable Baseline in ATSC-M/H
- Time will tell...

Potential for Bit-Depth Scalability

- Consumer displays with higher bit depth
 - Expected in next 2-3 years
 - Should create demand for better content
- Optical disc storage (e.g., Blu-Ray Disc) might be a promising route
 - Satisfy both legacy and higher-bit depth displays
 - However, scalability might just be a temporary solution for transition period in this case
- Use in other environments less certain
 - Broadcast studio, post-production environments
 - Medical, satellite, HDR imaging, etc.

Deployment of Multiview?

- Key issues for MVC [current scope, near-term]
 - Acquisition/production with large camera arrays difficult
 - Require rate of multiview video proportional to number of views

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Note: 3D TV is here...

- 3D-ready sets on the market
 - Samsung & Mitsubishi
 - Use 3D DLP from TI
 - Shuttered glasses
- Content sources
 - 3D-enabled Blu-ray Disc players, game consoles
 - Software conversion, e.g., via Media Center PC
- Where can we go from here?

One Option: Get Rid of the Glasses

- More views needed to drive **auto-multiscopic** displays
- Technology challenge
 - Synthesize a continuum of views based on a limited set of decoded views
 - Specify a format that fixes the rate, but allows an arbitrarily large number of views to be rendered

Other Benefits

- Improved support for free-viewpoint video
 Interactive navigation of scene
- Improved support for 3D displays
 - Benefits for advanced signal processing, e.g., upsample along view dimension for anti-aliasing

Plans are underway to standardize a multiview video + depth format

(but still at an early stage)

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Free Viewpoint Video Using Depth

Microsoft Research - SIGGRAPH 2004

High-Quality Video View Interpolation Using a Layered Representation C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, R. Szeliski

Anti-aliasing for 3D Displays Using Depth

Mitsubishi Electric Research Labs - Eurographics 2006

Antialiasing for Automultiscopic Displays M. Zwicker, W. Matusik, F. Durand, H. Pfister

Interesting Technical Issues

- What is the correct data representation format?
 - Depth map associated with each camera view
 - Global depth map of the scene / sampling problem
 - Occlusion maps
- What is the best way to code depth?
 - Apply conventional (AVC / MVC) coding techniques
 - New methods: better preserve edge, exploit spatial characteristics
- How should depth be integrated into the framework?
 - Integral part of video payload, e.g., share motion vectors
 - As an independent and auxiliary stream
- Measuring the effectiveness of depth data
 - Quality of the depth: both estimation and coding perspectives
 - Quality of intermediate view (outside traditional coding domain)

Additional Directions & Challenges

Future Directions

- Increasing single-layer coding efficiency
 - Better prediction and motion modeling
 - Better entropy coding and reduction of side info
 - Better transform and decomposition of source signal (talk by Martin Vetterli on DCT, Wavelets and X-lets)
- Perceptual Coding
 - How can we measure subjective assessment only?
 - Geometric modeling, e.g., of textures, regions
 - Computer vision, analysis/synthesis techniques (talk by Tsuhan Chen on image understanding)

Future Directions

- Distributed Source Coding
 - Doesn't yet seem ready for standardization
 - Let's talk more about this in the panel...

Future Directions

- Other Dimensions of Scalability
 Seam Carving : Content-aware resizing
 - : Fine grain "spatial" scalability

[Avidan and Shamir, SIGGRAPH 2007]

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

Concluding Remarks

Unified design across all AVC extensions

- Substantial re-use of primary coding engines, layered/modular design
- Borrowing of coding concepts across SVC and MVC extensions (e.g., interlayer vs inter-view motion prediction)
- Starting to see some relation between professional extensions and SVC

• Breaking this mold will not be easy

- AVC is a set of very mature and well engineered technology
- Sets the current benchmarks in conventional rate-distortion video coding performance - good for the community to have this!
- Academia could learn from the technology selection process of standards (common conditions, accessible s/w, continually ratchet performance)

• Moving forward

- Expect further improvements within AVC framework, but it would be more exciting to see alternative frameworks reach the same level of maturity
- Requirements for new coding/transport paradigms should be considered
- Potential shift away from maximizing pixel fidelity (as measured by MSE) towards alternative measures for visual quality assessment

www.pcs2007.org

Obrigado!

A. Vetro: H.264/AVC and Its Extensions: How Close is this Family?

