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ABSTRACT

Wyner-Ziv (WZ) video coding – a particular case of distributed 

video coding (DVC) – is a new video coding paradigm based on two 

major Information Theory results: the Slepian-Wolf and Wyner-Ziv 

theorems. Recently, practical WZ video coding solutions were 

proposed with promising results. Most of the solutions available in 

the literature, model the correlation noise between the original frame 

and the so-called side information by a given distribution whose 

relevant parameters are estimated in an offline process, at the 

encoder. In this paper, three algorithms are proposed towards a more 

realistic WZ coding approach by performing online estimation of the 

error distribution at the decoder. Both algorithms explore temporal 

correlation between frames however with different levels of 

granularity: frame, block and pixel levels; better rate-distortion (RD) 

performance is achieved for lower granularity (pixel) level. 

Index Terms — Video coding, correlation, noise

1. INTRODUCTION
*

Nowadays, the digital video coding solutions available rely on the 

powerful hybrid block-based motion compensation and DCT 

transform (MC/DCT) architecture. All the ITU-T VCEG and 

ISO/IEC MPEG standards follow this approach, mostly targeting 

applications where the video content is encoded once and decoded 

multiple times, e.g. broadcasting or video streaming. In such 

applications, the video codec architecture is primarily driven by the 

one-to-many model of a single complex encoder and multiple light 

(cheap) decoders; typically the encoder is 5 to 10 times more 

complex than the decoder [1]. The complexity burden of the encoder 

is mainly associated with the motion estimation/ compensation task, 

which is the major responsible for the high rate-distortion 

performance achieved. 

However, this architecture is being challenged by several 

emerging applications such as wireless video surveillance, 

multimedia sensor networks, wireless PC cameras and mobile 

camera phones. These applications have different requirements from 

those targeted by traditional video delivery systems, e.g. in wireless 

video surveillance systems, low cost encoders are important since 

there is a high number of encoders and only one or few decoders. 

Distributed video coding fits well in these scenarios, since it 

enables to explore the video statistics, partially or totally, at the 

*
The work presented here was developed within DISCOVER, a 

European Project (http://www.discoverdvc.org), funded under the 

European Commission IST FP6 programme. 

decoder only, relying on a low encoding complexity. From the 

Information Theory, the Slepian-Wolf theorem [2] states that it is 

possible to compress two statistically dependent signals, X and Y, in 

a distributed way (separate encoding, jointly decoding) using a rate 

similar to that used in a system where the signals are encoded and 

decoded together, i.e. like in traditional video coding schemes. The 

complement of Slepian-Wolf coding for lossy compression is 

Wyner-Ziv coding [3]. The WZ coding deals with lossy source 

coding of X with side information Y at the decoder and enables a 

flexible allocation of complexity between the encoder and the 

decoder. The side information is usually interpreted as an attempt 

made by the decoder to obtain an estimate of the original frame. In 

the WZ coding scenario, error correcting codes are used to improve 

the quality of the side information until a target quality for the final 

decoded frame is achieved. 

One of the most interesting DVC approaches is the turbo-based 

pixel domain Wyner-Ziv coding scheme presented in [4], where the 

decoder is responsible to explore all the source statistics, and 

therefore to achieve compression following the Wyner-Ziv 

paradigm. Since DVC implies a statistical mind set, the coding 

efficiency of Wyner-Ziv coding solutions depends critically on the 

capability to model the statistical dependency between the original 

information at the encoder and the side information computed at the 

decoder. This is a complex task since the original information is not 

available at the decoder and the side information quality varies 

along the sequence, i.e. the error distribution is not temporally 

constant. For example, when high motion occurs in a sequence is 

more difficult to predict the Wyner-Ziv frame and the errors in the 

side information increase significantly. In this paper, new methods 

are proposed to estimate the correlation noise model based on 

temporal correlation information, in this case the motion 

compensated residual obtained at the decoder. The first method 

proposed models the correlation noise distribution, at the decoder, 

adaptively at the frame level. 

However, the correlation noise statistics between the original 

and side information frames are not spatially stationary. Usually, the 

noise or error N = X Y is estimated without taking into account 

spatial dependencies. This is an unrealistic assumption because the 

quality of the side information is not constant across the whole 

frame due to occlusions or illumination changes. This paper departs 

from the spatial stationary assumption by proposing a new algorithm 

performed at the decoder which adapts the correlation noise 

statistics locally on a block-by-block basis and at the pixel level. 

This paper is organized as follows: Section 2 presents a brief 

summary of the IST-PDWZ codec. In Section 3, offline (encoder-

generated) correlation noise statistics models are briefly described to 

introduce the online (decoder-generated) correlation noise statistics 
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models presented in Section 4, which constitutes the novel element 

of this paper. Conclusions and some future work topics are 

presented in Section 5. 

2. THE IST-PIXEL DOMAIN WYNER-ZIV (IST-

PDWZ) VIDEO CODEC  

Figure 1 illustrates the architecture of the IST-PDWZ video codec 

proposed in [5]; this codec is an improved PDWZ video coding 

solution which follows the same architecture as the one proposed by 

Aaron et al. in [4]. There are however some major differences 

regarding the coding solution proposed in [5], notably a more 

efficient side information generation scheme at the decoder by using 

motion compensated frame interpolation with spatial motion 

smoothing (for more details the reader should consult [6]). 

Figure 1 – IST-PDWZ video codec architecture. 

In a nutshell, the coding process is as follows: the video frames 

are organized into key frames and Wyner-Ziv (WZ) frames. The key 

frames are traditionally intraframe coded. The Wyner-Ziv frame 

pixel values are quantized using a 2M-level uniform scalar quantizer. 

Over the resulting quantized symbol stream, bitplane extraction is 

performed; each bitplane is then independently turbo encoded and 

the parity bits are stored in the buffer and transmitted in small 

amounts upon decoder request via the feedback channel. 

At the decoder, the frame interpolation module is used to 

generate the side information frame, an estimate of the WZ frame, 

based on previously decoded frames, XB and XF. For a Group Of 

Pictures (GOP) length of 2, XB and XF are the previous and the next 

temporally adjacent key frames.  

The side information SI is then used by an iterative turbo 

decoder to obtain the decoded quantized symbol stream. The turbo 

decoder is constituted by two soft-input soft-output (SISO) 

decoders; each SISO decoder is implemented using the Maximum A

Posteriori (MAP) algorithm. It is assumed the decoder has ideal 

error detection capabilities, i.e. the turbo decoder is able to measure 

in a perfect way the current bitplane error probability Pe. For 

example, if Pe > 10 3, the decoder requests for more parity bits from 

the encoder via feedback channel; otherwise, the bitplane turbo 

decoding task is considered successful. The side information is also 

used in the reconstruction module, together with the decoded 

quantized symbol stream, to help in the WZ frame reconstruction 

task. The motion refinement module is used to improve the quality 

of the reconstructed image for a certain bitrate, i.e. after decoding an 

integer number of bitplanes.

3. OFFLINE (ENCODER) CORRELATION NOISE 

MODELS

In order to the decoder make use of the side information, obtained at 

the decoder by frame interpolation, it needs to have reliable 

knowledge of the model that characterizes the statistical relation 

between the SI frame and the original frame. The statistical 

dependency between these two frames corresponds to a virtual 

channel (see Figure 1) with an error pattern characterized by some 

statistical distribution (or model) since the side information may be 

seen as a ‘corrupted’ version of the original information. If the 

model accurately describes the WZ  SI relationship, the coding 

efficiency is high; however, if this model fails or if there is a 

significant mismatch between the “true” correlation and the 

estimated one, it will be observed a coding efficiency loss. In the 

context of Figure 1, this corresponds to less accurate information at 

the input of the SISO decoders and it will make the turbo decoder 

spent more bits in order to correct the same amount of errors. The 

first step towards this direction is to present a study of offline 

models computed at the encoder using the original information; this 

will give insight of the maximum or “ideal” performance (and the 

importance of the correlation noise model in the overall setting) that 

can be achieved. 

3.1. Sequence level correlation noise estimation 

In previous works, e.g. [5], [6], the authors used a Laplacian 

distribution as in (1) to model the statistical correlation between the 

original frame and the side information.

( )
2

WZ SI
WZ SIf e (1)

The Laplacian distribution is used to convert the side information 

(pixel values) into soft-input information needed for turbo decoding. 

In [5], [6] the Laplacian distribution parameter , given by 

2
2

2 , (2)

is computed offline, at the encoder, over the whole video sequence 

and sent to the decoder before the WZ coding procedure starts. It is 

then kept constant for the decoding of all WZ frames. In (2), 2 is 

the variance of the residual between the WZ and the SI frames. This 

 calculation process is however not efficient because it does not 

exploit the variability of the correlation model along time (changes 

between frames) and space (between regions of a frame). 

3.2. Frame level correlation noise estimation 

In order to explore the time variability of the correlation noise 

model, one possible approach is to calculate the variance of the 

residual between a WZ frame and the corresponding SI frame, and 

use (2) to compute the Laplacian parameter. This Laplacian 

distribution parameter value is then used in the decoding process of 

that WZ frame.  

3.3. Block level correlation noise estimation

Recognizing that within the SI frame coexist regions where the 

frame interpolation was successful (high correlation) and regions 

where the interpolation has failed (low correlation) will lead to an 

adaptation of the correlation noise model at the block level (i.e. to a 

lower granularity level than the frame level). Usually, the frame 

interpolation algorithm fails often in regions where a high amount of 

motion occurred or in uncovered regions and it is quite good in 

regions where the amount of motion is low, e.g. static background. 

Since different areas of the SI frame have associated different 

amounts of interpolation errors, it is expected the correlation noise 

model between the WZ and the SI frames varies within the frame. 

In order to exploit the spatial variability of the correlation noise 

model, the Laplacian distribution parameter is calculated at the n×n

samples block level k; the block size considered is equal to the one 
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used in the frame interpolation stage in order to more easily detect 

the interpolation errors. The n×n block variance k
2 is calculated 

from:
222

k k k k kE WZ SI E WZ SI (3)

where WZk and SIk represent the kth samples block of the WZ and SI 

frames respectively and E[.] is the expectation operator. Substituting

in (2) 2 by k
2 given by (3), the k value is obtained; all the samples 

within the kth block are characterized by the same k value. 

3.4. Experimental results 

Table 1 illustrates the rate and the PSNR results obtained for the 

first 101 frames of the Foreman QCIF sequence according to the 

number of decoded Wyner-Ziv bitplanes (1, 2, 3 or 4). The test 

conditions for the frame interpolation and motion refinement 

modules are the same used in [5]. The key frames are encoded with 

H.263+ intra with a quantization parameter (QP) equal to 13, 10, 8, 

5, respectively, depending on the number of decoded Wyner-Ziv 

bitplanes; using these QP values for the key frames allows to have 

almost constant decoded video quality for the full set of frames (key 

frames and WZ). A GOP size of 2 is considered, i.e. one WZ frame 

in between two Intra coded frames.

Table 1 – RD results for the sequence, frame and block 

granularity levels for the Foreman QCIF sequence. 

Nr.

Bitplanes

Granularity 

1
Rate   PSNR

[kbps]  [dB]

2
Rate  PSNR

[kbps]     [dB]

3
Rate    PSNR 

[kbps]   [dB]

4
Rate      PSNR 

[kbps]     [dB] 

Sequence

level

(offline)

364.42 31.59 500.77 33.17 667.37 34.57 1045.9  37.6 

Frame 

level

(offline)

362.55 31.59 498.19  33.18 664.32  34.57 1042.38  37.6 

Block

level

(offline)

358.55 31.59 486.9  33.18 644.56  34.58 1015.09  37.61 

As expected, the better RD results are obtained for the block 

level adaptation of the correlation noise model. The coarser 

sequence level adaptation has the worst results and as more fine 

adaptation is performed (frame and block levels) the RD results 

improve. The results obtained also show modest gains in RD 

performance by adapting the correlation model at a finer granularity 

level, with a maximum of 30.8 kb/s in the 4th bitplane comparing the 

sequence and block level adaptations. Further gains are expected if 

the side information exhibits more abrupt quality variations 

temporally and/or spatially. 

4. ONLINE (DECODER) CORRELATION NOISE 

MODELS

The offline (encoder) correlation noise calculation process is not 

acceptable and realistic because it requires the encoder to recreate 

the side information. Since it is used a motion estimation and 

compensation algorithm to generate the side information, this task 

cannot be performed in a low complexity encoder (one of the main 

targets of distributed video coding).

In this context, the realistic approach is to perform dynamic 

estimation, at the frame, block or even at the pixel level, of the 

Laplacian distribution parameter in the decoder, where more 

computational resources are available according to the DVC 

paradigm. Moreover, the Laplacian distribution parameter does not 

have to be transmitted from the encoder to the decoder, typically 

under error prone conditions.

The major novelty of this paper resides on the proposal and 

study of new  parameter estimation methods that work efficiently 

at the decoder. This step represents an important departure from 

previous work in the literature and can lead to a more practical 

Wyner-Ziv video coding solution since it is no longer necessary to 

recreate the side information at the encoder side. Three granularity 

levels are proposed: the frame, the block and the pixel level; both 

are evaluated in the architecture described in Section 2 (Figure 1). 

The novel estimation techniques make use of XB and XF frames 

(where XB and XF are previously decoded key frames) along with the 

motion vectors obtained in the side information generation process. 

4.1. Frame level correlation noise estimation

In order to estimate the Laplacian distribution parameter at the 

decoder, it is necessary to define a metric that expresses the variance 

between the original and the side information, since the original 

frame is not available at the decoder. The frame level  estimation 

technique proposed in this paper can be described in the following 

steps: 

i) Residual frame generation: It is first computed the residual frame 

R, between the motion compensated versions of the frames XB and 

XF as follows: 

, , ,B b b F f fR x y ABS X x dx y dy X x dx y dy (4)

The XB (x + dxb, y + dyb) and XF (x + dxf, y + dyf) represent the 

backward and the forward motion compensated frames, respectively 

and (x, y) corresponds to the pixel location in the R frame. In (4), 

(dxb, dyb) and (dxf, dyf) represent the motion vectors for the XB and 

XF frames, respectively. 

ii) Residual frame variance computation: The variance of the 

residual frame is then calculated from:
222 , ,R E R x y E R x y (5)

iii)  parameter estimation: R
2 is a confidence measure of the SI 

frame creation process which indicates how good the frame 

interpolation outcome is; ideally R
2 should be close to the variance 

of the residual between the WZ and the SI frames. So, it is proposed 

to use the variance metric defined in (5) as a way to represent the 

variance between the original information and the side information; 

the  parameter estimate for each WZ frame is then obtained from 

(2) by substituting 2 by the R
2 obtained from (5). 

4.2. Block level correlation noise estimation 

As previous results have shown, adapting the Laplacian distribution 

parameter between the WZ and the SI frames at the block level can 

improve the IST-PDWZ RD performance when compared to a 

sequence or frame level approach. In this Section, it is proposed a 

block level  estimation technique performed at the decoder with the 

aim of improving the RD performance when compared to the frame 

granularity level. The block level  estimation approach proposed 

here can be described in the following steps: 

i) Residual frame generation: The residual frame R between the XB

and XF, both motion compensated, is firstly computed as described 

in (4). 
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ii) Residual frame kth block variance computation: The kth block 

variance of the residual frame, 2

kR
, can be obtained from (5) 

however considering the expectation operation over the n×n samples 

block of frame R instead of the whole frame.  

iii)  parameter estimation: The  parameter estimate for the kth

block of the WZ frame is: 

2
2

,2
ˆ

,
k

k
k

R

E R x y

E R x y
(6)

In (6), ,kE R x y is the expectation operation over the n×n

samples block of frame R and ,E R x y is the expectation 

operation over the frame R. Experimentally, (6) has shown to fit 

well the k parameter calculated between corresponding kth samples 

blocks of the WZ and SI frames (Section 3.3). 

4.3. Pixel level correlation noise estimation 

The coarse to fine strategy can be pursued even further by 

estimating the correlation noise model at the pixel level. In this 

Section, it is proposed a technique, performed at the decoder, to 

estimate the Laplacian distribution parameter at the pixel level; this 

technique aims to improve the RD performance when compared to 

coarser granularity levels (frame and block). The pixel level 

estimation approach proposed here can be described in the following 

steps: 

i) Residual frame generation: The residual frame R between the XB

and XF, both motion compensated, is firstly computed as described 

in (4). 

ii)  parameter estimation: The  parameter estimate at the (x, y)

pixel location is: 

2
,

2 1
ˆ

, ,x y R x y E R x y
(7)

In (7), ,E R x y is the expectation operation over the frame R.

Experimentally, (7) has shown to fit well the (x,y) parameter 

calculated between co-located pixel values of the WZ and SI frames. 

4.4. Experimental results

Table 2 shows the IST-PDWZ RD for the same test conditions as 

defined in Section 3.4, but now using the online decoder correlation 

noise estimation models proposed in the previous Sections. 

Table 2 – RD results for the frame, block and pixel granularity 

levels for the Foreman QCIF sequence.

Nr.

Bitplanes

Granularity

1
Rate   PSNR 

[kbps]  [dB] 

2
Rate      PSNR 

[kbps]     [dB]

3
Rate    PSNR 

[kbps]   [dB]

4
Rate       PSNR 

[kbps]      [dB] 

Frame  

(decoder) 
362.55 31.59 499.6      33.18 673.73  34.57 1076.73    37.61 

Block   

(decoder)  
362.32 31.59  499.37    33.18 664.32  34.58 1045.2      37.61 

Pixel

(decoder)  
361.61 31.59 496.78    33.18 663.61  34.57 1049.44    37.61 

Frame 

(offline)
362.55 31.59 498.19    33.18 664.32  34.57 1042.38     37.6 

Block

(offline)
358.55 31.59 486.9      33.18 644.56  34.58 1015.09    37.61 

As observed in Table 2, adapting dynamically, at the decoder, 

the Laplacian distribution parameter at the block level allows 

achieving better RD performance than the one obtained at the 

coarser frame granularity level. At the pixel level, the spatial region 

of support is only a pixel which can cause some instability; however 

the RD results are encouraging, especially for the 2nd bitplane where 

it outperforms the block and frame level estimation. In terms of 

computational complexity, the finest granularity level is the most 

demanding one; however, this should not be a critical issue since the 

complexity increase occurs at the decoder side where complexity is 

not a burden according to the WZ coding paradigm. 

The online decoder  estimation algorithms proposed in this 

paper have a small loss in coding efficiency in comparison with the 

equivalent offline (encoder) methods presented in Section 3, both at 

the frame and block levels. This coding efficiency loss can be 

explained by noting that the offline process has access to the original 

frames while the online process only has an approximation of the 

true variance given the motion compensated residual. It is important 

to note however that the methods proposed here have the major 

advantage of being performed at the decoder leading to a more 

realistic WZ video coding scenario. 

5. FINAL REMARKS 

The techniques proposed in this paper alleviate the encoder from the 

high computational and cumbersome task of recreate the side 

information and allow the decoder to perform the estimation of the 

correlation noise distribution. These methods enable practical DVC 

solutions where the encoder has low complexity constraints. It is 

presented a complete analysis with both offline (encoder) and online 

(decoder) techniques, which work at different granularity levels, to 

estimate the correlation noise model. For future work is planned to 

combine the techniques proposed here with spatial coherence 

analysis of the side information frame to further enhance the RD 

efficiency. 
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