
 

 

Abstract— In recent years, visual sensors have been quickly 

improving, notably targeting richer acquisitions of the light present 

in a visual scene. In this context, the so-called lenslet light field (LLF) 

cameras are able to go beyond the conventional 2D visual acquisition 

models, by enriching the visual representation with directional light 

measures for each pixel position. LLF imaging is associated to large 

amounts of data, thus critically demanding efficient coding solutions 

in order applications involving transmission and storage may be 

deployed. For this reason, considerable research efforts have been 

invested in recent years in developing increasingly efficient LLF 

imaging coding (LLFIC) solutions. In this context, the main 

objective of this paper is to review and evaluate some of the most 

relevant LLFIC solutions in the literature, guided by a novel 

classification taxonomy, which allows better organizing this field. In 

this way, more solid conclusions can be drawn about the current 

LLFIC status quo, thus allowing to better drive future research and 

standardization developments in this technical area.  
 

Index Terms—Light field image coding, lenslet, taxonomy, 

perspective image, micro-image.  

I. INTRODUCTION 

In recent years, significant developments in visual 

representation technology have occurred, aiming to increase the 

user quality of experience (QoE) by providing highly immersive 

and fully realistic 3D experiences. As it is well-known, the so-

called plenoptic function describes the intensity of light at any 

point in space (x,y,z), coming from any angular direction (θ, φ), 

over time (t), and for each wavelength (λ) [1][2]. This means that 

highly immersive experiences may be provided to the users if the 

plenoptic function information is effectively captured and 

replicated. However, sensors in conventional cameras just 

capture the total light intensity hitting each pixel position and, 

thus, directional information about the light rays is lost. This is 

clearly a limited representation of the real scene. The recent 

emergence of sensors with the capability to capture higher 

dimensional visual representations has allowed improving the 

conventional imaging representation model based on 2D planes 

and increased the potential to offer the users high quality 

experiences in terms of immersion and realism. For instance, by 

placing a micro-lens (ML), i.e. lenslet, array in the optical path 

of a conventional monocular camera, it is possible to capture the 

light for each spatial position (x, y) and coming from any angular 

direction (θ, φ). This imaging representation model, which can 

be seen as richer way of sampling the plenoptic function 

information regarding the conventional model, is known as 

lenslet light field (LLF) imaging; for length reasons, this paper 

will focus on the LLF coding technology corresponding to the 

visual information for a single time instant, i.e. a LLF image. 

While LLF imaging is an important step forward to provide 
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increased immersive and realistic 3D experiences, its acquisition 

process results in a large amount of data, which requires a 

significant storage space and transmission bandwidth, if efficient 

coding solutions are not used. For this reason, tens of LLF image 

coding (LLFIC) solutions have been proposed in recent years. 

However, a comparison of their performances is still a rather 

difficult task since the reported performance results have been 

obtained most of the times under different test conditions and 

evaluation methodologies and there is no public software 

available to obtain comparable results. Acknowledging the 

practical importance of developing efficient LLF coding 

solutions, JPEG has launched in 2015 the JPEG Pleno 

standardization activity, addressing light field (LF) imaging, 

acquired by both LLF cameras and high density camera arrays 

[3]. In January 2017, JPEG issued a Call for Proposals (CfP) on 

LF coding technologies [4], asking for efficient coding solutions 

fulfilling an identified set of requirements. The main goal is to 

standardize LF coding solutions providing interoperability 

between different products and applications. In JPEG, light field 

coding solutions will be specified in JPEG Pleno Part 2, named 

Light Field Coding [5], one of the parts of the JPEG Pleno 

standard that JPEG is planning to specify coding solutions for 

plenoptic imaging modalities, where light fields are considered 

along with point clouds and holographic data. 

In this context, this paper first proposes a meaningful 

classification taxonomy for LLFIC solutions that allows to 

identify and abstract their differences, commonalities and 

relationships. Guided by this classification taxonomy, some of 

the most relevant LLFIC solutions available in the literature are 

then reviewed and their compression performances analyzed 

under precise and meaningful test conditions. It is important to 

stress that the main purpose of this paper is not to propose a novel 

LLFIC solution but rather to organize, classify and evaluate a 

technical area that has received many contributions in recent 

years. This type of paper is essential to gather a systematic, high-

level and more abstract view of the field to further launch solid 

and consistent advancements in this technical area. With this 

purpose in mind, the rest of this paper is organized as follows: 

Section II will briefly review the LLF imaging basics, while Section 

III will propose a classification taxonomy for the many LLFIC 

solutions in the literature. Section IV will review the most relevant 

LLFIC solutions in the literature driven by the proposed taxonomy 

and, finally, Section V will present a comparative performance 

analysis of the LLFIC solutions reviewed in Section IV. 

II. LLF IMAGING: A BRIEF REVIEW 

LLF imaging is a 3D visual representation model where the 

scene’s light radiance is captured through a high-density set of 
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tiny lenses located in a single camera, the so-called lenslet light 

field cameras. These cameras acquire a 2D array of so-called 

micro-images (MI), captured using an array of MLs placed in 

front of the camera’s photosensor. As the ML array (MLA) is 

placed in the optical path of a conventional monocular camera, 

the LLF image provides directional information for each sampled 

position [6]; this directional information is precisely the main 

added value of this type of sensor/imaging, as provides a richer 

visual representation.  

There are two main LLF camera architectures depending on 

the MLA placement: the so-called unfocused and focused 

cameras, aka plenoptic camera 1.0 and 2.0, respectively. In the 

unfocused cameras, such as in the Lytro cameras’ family [7], the 

MLA is placed at exactly one focal length in front of the 

photosensor plane, with MLs focused on infinity; on the other 

hand, in the focused cameras, such as the Raytrix cameras’ family 

[8], the MLA is placed at a distance b in front of the photosensor 

plane, with the MLs focused on the main lens image plane. As a 

consequence, the information contained within and between MIs 

differs for each of these camera architectures. In the unfocused 

cameras, each MI captures only angular information (all 

directions) for a given spatial sample and the information 

regarding the spatial samples (spatial information) for a given 

direction are spread across MIs; on the other hand, in the focused 

cameras, both spatial and angular information are captured in 

each MI and across MIs. Besides the optical setup, these two LLF 

camera architectures also typically differ on the MLA structure, 

i.e. number of MIs as well as their shape and size. 

Ideally, each ML should cover the largest number of 

photosensor pixels to create a MI with the highest angular 

resolution [9]. However, by doing this, the number of MIs would 

be reduced for the same photosensor resolution, and so also the 

spatial resolution for each angular direction. This highlights that 

there is an important trade-off between spatial and angular 

resolution in this type of cameras. While the unfocused camera 

favors a spatial resolution reduction as a trade-off for higher 

angular resolution, the focused camera works the other way 

around, thus favoring a spatial resolution increase at the price of 

a lower angular resolution [9]. The LLF images obtained directly 

from the sensor, so-called raw LLF images, need to be processed 

such that some extracted/rendered information can be displayed, 

for example, in conventional 2D or autostereoscopic displays, as 

native light displays are not yet available. The data rendered from 

the raw LLF image are known in the literature as perspective 

images (PIs) or sub-aperture images (SAIs), where each PI (or 

SAI) represents a different perspective view (or viewpoint) to the 

scene. Naturally, different processing and rendering techniques 

are used for unfocused and focused LLF content due to the 

different optical acquisition setups.  

Due to the key role that unfocused LLF content, acquired with 

a Lytro Illum LF camera, will assume in sections IV and V, it is 

worth to briefly review here the approach adopted by the JPEG 

Pleno LF coding CfP [4] and Common Test Conditions (CTC) 

[10] to render PIs from the Lytro Illum raw LLF image. The 

Lytro Illum raw LLF content processing includes first 

demosaicing, devignetting and MIs alignment [4]. Then, the 

obtained LLF image (formed by demosaiced, devignetted and 

aligned MIs, see Figure 1(a)) is rendered into a 15×15 matrix of 

2D images (see Figure 1(b)), the so-called PIs. In this case, a PI 

is simply obtained by extracting the pixel with the same position 

within each MI and putting them all together; the result of this 

process is a 2D image with a spatial resolution of 625×434 pixels. 

While 225 (15×15) PIs are originally rendered, both the first and 

last rows and columns of the PIs 2D array are discarded from 

further processing (thus resulting into 13×13 PIs) to avoid using 

the dark PIs associated to the vignetting effect [4][10]. Finally, 

each PI undergoes color and gamma correction. Note that, due to 

length constraints, the rendering algorithms for focused cameras 

are not reviewed here as they are not instrumental to this paper; 

however, the reader may refer to [11] for a detailed overview. 

  
(a) (b) 

Figure 1 – (a) 625×434 matrix of MIs (each with 15×15 pixels); and (b) 

15×15 matrix of PIs (each with 625×434 pixels) for the Bikes LLF image. 

III. LLFIC: PROPOSING A CLASSIFICATION TAXONOMY 

Since multiple technical approaches have been adopted for the 

LLFIC solutions available in the literature, it is useful to identify 

their main commonalities, differences and relationships, thus 

providing a better understanding of the full LLFIC landscape and 

promising future research and standardization directions. In this 

context, this paper proposes first a classification taxonomy for 

LLFIC solutions and will after exercise it by reviewing some of 

the most relevant LLFIC solutions available in the literature 

associated to different classification paths. In the next sub-

sections, the proposed classification dimensions for the 

taxonomy will be proposed first. After, the classes for each 

taxonomy classification dimension will be proposed. The 

classification dimensions and the classes within each dimension 

have been defined based on the exhaustive reviewing of tens of 

LLFIC solutions available in the literature in order a robust 

taxonomy could be defined [12]-[99]; this list of references is 

also an useful contribution of this paper.  

A. Taxonomy Classification Dimensions 

This section presents and defines the classification dimensions 

for the taxonomy proposed for LLFIC solutions. After an 

exhaustive study of the LLFIC solutions available in the 

literature, it was concluded that the most appropriate taxonomy 

classification dimensions are: 

1. Fidelity: Refers to the fidelity with which the data is coded. 

2. Data Representation Basis: Refers to the elementary 

component, i.e. basis, in which the raw sensor image data 

(sensed light intensity and direction information) are 

represented for coding purposes; depending on the adopted 

data representation basis, demosaicing, devignetting, 

alignment, and perspective image (or view) rendering may be 

involved. 

3. Data Type: Refers to the type of data that is coded; depending 

on the adopted data type, depth or disparity estimation may be 

involved. 

4. Data Structure: Refers to the way the LLF data, represented 

in a specific data representation basis, are arranged to be then 
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(a) (b) (c) (d) 

Figure 2 – Illustration of data structure classes: (a) 3D and 4D arrays of PIs; (b) 3-Layered sets of PIs; (c) Pseudo video of PIs; and (d) Pseudo 

multi-view video of PIs. 

coded while exploiting the available spatial and/or angular 

redundancies. 

Using these dimensions, each LLFIC solution may be 

characterized by a taxonomy classification path connecting a set 

of classes along these dimensions, thus allowing to identify 

commonalities through the overlapping of the corresponding 

classification paths. Although the taxonomy does not directly 

address the coding tools, all the dimensions are directly related to 

the coding process with a direct impact on the functionalities 

offered in the relevant application scenarios. For example, the 

fidelity dimension is directly related to the faithfulness of the 

data, e.g. critical for medical applications. The data representation 

basis dimension has a direct relation with rendering, e.g. critical 

for 2D backward compatibility, stereoscopic and 

autostereoscopic displaying, interactive navigation and 

refocusing. The data type and data structure dimensions are 

directly related to compression efficiency, random access and 

scalability, e.g. critical for broadcasting, streaming and storage 

applications to meet the characteristics of multiple types of 

displays, transmission channels and user needs.  

B. Classes for each Classification Dimension 

Using the proposed classification dimensions, it is now 

necessary to propose the classes for each classification 

dimension, naturally based on the LLFIC solutions available in 

the literature. After exhaustive analysis, the following classes are 

proposed for each dimension: 

1. Data Fidelity: In terms of fidelity, the following classes are 

proposed: 

a. Lossless – Codecs keeping the original data fidelity, 

meaning that the decoded and original data are 

mathematically equal (up to a certain precision, if required). 

b. Lossy – Codecs not keeping the original data fidelity, 

typically to increase the compression factor; high fidelity, 

notably perceptually lossless quality, may still be achieved 

with the appropriate coding parameters configuration. 

2. Data Representation Basis: In terms of data representation 

basis, the following classes are proposed: 

a. Micro-Image – Representation basis of the LLF data 

corresponding to the image captured through an individual 

ML, the so-called micro-image (MI). The full LLF image is 

represented as a set of MIs. Depending on the optical setup 

used in the LLF acquisition, each MI may capture only 

angular information (unfocused camera) or both angular and 

spatial information (focused camera). 

b. Perspective Image – Representation basis of the LLF data 

corresponding to an image associated to a specific angular 

viewing direction of the same scene, the so-called 

perspective image (PI). Depending on the optical setup used 

in the LLF acquisition, each PI may be obtained by 

extracting a single pixel or a patch (of pixels) in the same 

location from each micro-image and putting them together 

in a 2D array, i.e. a 2D image. 

3. Data Type: In terms of data type, the following classes are 

proposed: 

a. Texture – Information to be coded includes only texture 

data, i.e. color information associated to the raw sensor data 

in some color space, e.g. RGB or YUV, and data 

representation basis. 

b. Texture + Geometry – Information to be coded includes 

both texture and geometry-related data, with the latter 

associated to the 3D arrangement of the scene. The 

geometry-related data can be either information expressing 

the distance, measured perpendicularly to the camera’s 

plane, between the camera lens’ optical center and the plane 

containing each scene (3D) point, the so-called depth, or 

information expressing the distance between two 2D image 

points (pixels) corresponding to the same scene (3D) point 

projection onto two camera planes, the so-called disparity; 

this information may be used to exploit the available angular 

redundancy. The geometry-related data may be estimated 

from the perspective (texture) images.  

4. Data Structure: In terms of data structure, the following 

classes are proposed: 

a. Single 2D Image – The LLF data, represented in a specific 

basis, are arranged in a 2D array, i.e. an image (see Figure 

1). This structure is suitable to be coded with standard-based 

image and video (Intra mode) coding solutions, e.g. JPEG 

2000 or HEVC Intra. In this context, only the spatial 

correlation within the LLF image (this means the 2D array 

of MIs) or within the image of PIs (this means the 2D array 

of PIs) is exploited. 

b. Multi-Dimensional Array of Images – The LLF data, 

represented in a specific basis, are arranged in an N-

dimensional array of images, usually without specific 

scanning considerations. The number of array dimensions 

can be three, this means a stack of either MIs or PIs (see 

Figure 2(a)), or four, this means a sequence of stacks of PIs 

(see Figure 2(a)). This structure is suitable to be coded with 

high-dimensional transform-based coding solutions. In this 

context, both the LLF spatial (this means within an image) 

correlation and the inter-view correlation (this means across 

the images, in one or two directions, depending on the 

number of array dimensions) are exploited. 

c. Layered Sets of Images – The LLF data, represented in a 

specific basis, are arranged in two or more layered sets of 

images (corresponding to PIs or MIs), as illustrated in Figure 

2(b). Altogether, the layered sets of images may correspond 

to the whole LLF data or only part of it, in case some data 

are not coded; in the latter scenario, the not coded LLF data 
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may be obtained at the decoder though image synthesis. 

Image synthesis, with or without using information from the 

original LLF image itself, may also be performed at the 

encoder to create better predictions. This structure is suitable 

to be coded with a hierarchical coding strategy, allowing 

different types of coding solutions (standard-based or not) 

to be applied to the images in each layer (this means 

hierarchical level). In this context, both spatial correlation 

(within an image) and inter-view correlation (in one or two 

directions) are exploited. 

d. Pseudo Video – The LLF data, represented in a specific 

basis, are arranged as a ‘temporal’ sequence of images 

(corresponding to PIs or MIs) following a specific scanning 

order (see Figure 2(c)), which targets an increased 

correlation between adjacent PIs, thus mimicking the high 

temporal correlation existing in a regular video sequence. 

This structure is suitable to be coded with standard video 

coding solutions, e.g. HEVC. In this context, both spatial 

correlation (within an image) and the correlation between 

‘temporally’ adjacent views (the ‘video frames’) are 

exploited. 

e. Pseudo Multi-View Video – The LLF data, represented in a 

specific basis, are arranged as multiple ‘temporal’ sequences 

of images (typically corresponding to PIs), as illustrated in 

Figure 2(d). This structure is suitable to be coded with multi-

view coding standards, e.g. MV-HEVC or 3D-HEVC. In 

this context, both spatial correlation (within an image) and 

the correlation between views (both ‘temporally’ and 

angularly adjacent views) are exploited. 

An overview of the proposed classification taxonomy is shown 

in Figure 3; note that the arrows simply intend to highlight 

example connection paths between classes along the four 

dimensions. Because the data structure dimension is directly 

related to compression efficiency, the next section will review in 

more detail a few, key LLFIC solutions in the literature, to better 

understand the involved key concepts and designs, guided by the 

proposed taxonomy’s data structure dimension. 

 

Figure 3 – Overview of the proposed LLFIC classification taxonomy. 

IV. LLFIC: REVIEWING GUIDED BY THE TAXONOMY’S DATA 

STRUCTURE DIMENSION 

To experience and appreciate the power of the proposed 

classification taxonomy, this section reviews and classifies some 

relevant and taxonomically representative LLFIC solutions 

available in the literature guided by the proposed taxonomy’s data 

structure dimension; because these solutions are strategically 

selected, based on their taxonomical representativeness, 

relevance and diversity in the LLFIC landscape and performance, 

a deeper and detailed view of the current LLFIC status quo can 

be obtained. Although this paper’s target is not to perform an 

extensive survey of the LLFIC literature, the authors provide in 

[100] a summary table where a very large set of LLFIC references 

are classified according to the proposed taxonomy; this table 

allows identifying related LLFIC solutions with respect to one or 

more taxonomy dimensions. 

Since taking the human visual system’s characteristics into 

account is a must for efficient image/video coding, most LLFIC 

solutions in the literature, including those reviewed in this 

section, perform some perception driven pre-processing before 

encoding. This pre-processing often involves a conversion from 

RGB to YUV (4:4:4) color space using some recommendation, 

e.g. ITU-R BT.709-6, color sub-sampling, e.g. from 4:4:4 to 

4:2:0, and bit depth downsampling, from 10-bit to 8-bit. 

A. Single 2D Image based LLFIC 

In [76], a LLFIC solution is proposed where the intrinsic 

correlation between neighboring MIs is exploited by a bi-

prediction estimation and compensation tool, so-called bi-

prediction self-similarity (BI-SS); this tool creates a LLF-biased 

additional prediction type in HEVC Intra coding, see encoding 

architecture in Figure 4. The key idea is to complement the 

powerful HEVC Intra coding tools set with a novel tool designed 

considering the specific LLF data characteristics when the data 

representation basis is the MI, naturally targeting a better 

correlation exploitation. The same HEVC rate-distortion 

optimization (RDO) process is applied to select the best 

prediction mode among the HEVC Intra modes and the novel Bi-

SS mode, followed by the usual HEVC Intra encoding steps (see 

Figure 4). Before encoding, the raw LLF image is demosaiced 

and devignetted (here MIs are not aligned) followed by the pre-

processing steps described at the beginning of Section IV. The 

resulting 8-bit YUV 4:2:0 2D (LLF) image constitutes the input 

for the encoder, hereafter called Bi-SS encoder. 

 

Figure 4 – Bi-SS LLF image encoding architecture. 

The main Bi-SS codec encoding steps involve: 

1. HEVC Intra Prediction: First, the 35 HEVC Intra prediction 

modes are evaluated for all possible Intra block sizes and the mode 

leading to the lowest RD cost (according to the HEVC RDO 

process) is selected as the best HEVC Intra prediction mode. 

2. Bi-SS Prediction: For each coding block (CB) size, ranging 

from 64×64 to 8×8, two SS-based prediction candidates are 

obtained from the same LLF image, through full search within 

the same causal neighborhood (formed by decoded blocks) of 

the CB to be predicted: 1) the uni-prediction SS (Uni-SS) 

candidate, corresponding to a prediction block estimated as in 

HEVC uni-predictive (P frame) coding but using as reference 

the LLF image itself (instead of a preceding image), the so-

called SS reference; and 2) the bi-prediction SS (Bi-SS) 

candidate, which corresponds to a weighted combination of 

two prediction blocks, jointly estimated from the same full 
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(causal) search area of the (same) SS reference. The joint 

estimation of the two prediction blocks is performed through 

an iterative process by minimizing a Lagrangian cost function 

conditioned to the optimal prediction found in the previous 

iteration; the Uni-SS prediction candidate is used as the starting 

point for this iterative process. After the joint estimation 

iterative process reaches a certain number of iterations, the 

HEVC RDO process is applied to select the best prediction 

between the Uni-SS and Bi-SS candidates. To select the final 

prediction, the HEVC RDO process is applied again between 

the (best) SS prediction and HEVC Intra prediction. 

3. Transform, Scaling & Quantization: The prediction residue 

between the CB and the best prediction previously found is 

then computed. This prediction residue is after transformed, 

scaled and quantized as in regular HEVC Intra coding. 

4. Inverse Scaling, Quantization & Transform: The quantized 

transform coefficients are then inversely scaled, quantized and 

transformed, thus obtaining the decoded prediction residue, 

which is then added to the appropriate prediction to reconstruct 

the image samples. 

5. Deblocking & SAO Filtering: The deblocking and sample 

adaptive offset (SAO) filters are applied over the decoded 

image samples to reduce the coding-related artifacts. The 

resulting filtered LLF image is stored in the decoded picture 

buffer to be used as reference for Intra/Bi-SS prediction. 

6. Entropy Coding: Finally, the coding bitstream correspondent 

to the coded LLF image is obtained by applying context 

adaptive binary arithmetic coding to the quantized transform 

coefficients data stream and the syntax elements, naturally also 

including the new SS prediction modes signaling.  

In terms of the proposed classification taxonomy, the presented 

Bi-SS LLF codec corresponds to a Lossy–Micro-Image–Texture–

Single 2D Image path. As mentioned above, the Bi-SS coding 

solution [76] considers as input a LLF image represented as a 2D 

array of MIs whose centers have not been aligned. This implies 

the decoder will need to receive some metadata, such as the MI 

centers, the MIs size and color calibration data, in order it is 

possible to render the corresponding 2D array of PIs, thus 

obtaining the output data for display, e.g. in the format defined in 

the JPEG Pleno LFC CTC [10]. However, no metadata coding 

solution has been considered in [76], thus implying that the total 

rate does not account the metadata required to produce 2D 

rendered images if alignment has to be performed at the decoder. 

Thus, to allow a fair and meaningful performance comparison 

with other LLFIC solutions when final 2D displaying is targeted, 

the Bi-SS coding solution evaluated in Section V.D will consider 

as input a LLF image formed by already aligned MIs (see Figure 

1(a)), thus avoiding the need for metadata coding. 

B. Two-Layered Sets of Images based LLFIC 

In [87], a LLFIC solution is proposed where the relationship 

(or correlation) between the full set of original PIs (rendered from 

the raw LLF image as described in Section II) is exploited 

through a graph-based representation. A graph is a data structure 

characterized by a set of nodes/vertices and corresponding 

connections/edges. The key idea is to estimate how similar each 

PI (corresponding to a graph node/vertex) is to each of the 

remaining PIs (in the full set of original PIs) and represent that 

similarity as a connection weight between two PIs. This allows 

defining a framework where, by combining the PIs according to 

the respective weights, it is possible to interpolate any PI within 

the full set of PIs. To take advantage of this graph-based 

representation to achieve high compression efficiency, this 

graph-based (GB) LLFIC solution [87] organizes the full set of 

(original) PIs in two layers, as depicted in Figure 5, thus allowing 

to selectively process each layer in a different way. 

 

Figure 5 – GB LLF image coding architecture. 

The main GB codec coding steps involve: 

1. Two-Layer PIs Structuring: After applying the pre-

processing steps described at the beginning of Section IV 

(except the bit depth downsampling), the resulting 10-bit YUV 

4:2:0 (13×13 central) PIs are arranged in a two-layered 

structure, following a chess pattern-like data split. In this 

context, the first layer (L1) will contain 85 PIs out of 169, while 

the second layer (L2) will contain the remaining 84 PIs, which 

will be interpolated at the decoder based on the decoded L1 PIs 

and the graph weighs.  

2. HEVC Encoding/Decoding: The 10-bit YUV 4:2:0 L1 PIs are 

organized into a pseudo video sequence, following a serpentine 

scanning order, and encoded with the HEVC Main10 profile 

and low delay configuration (IPP...) [101].  

3. Graph Estimation: A graph is estimated based on the 13×13 

central, original PIs. Basically, the luminance component of 

each PI is mapped to a node in a weighed graph, i.e. a graph 

with weights associated to its edges. Then, the graph weighted 

adjacency matrix W, with weights associated to the graph 

edges, representing the similarity between the two vertices (in 

this case, two PIs) it connects, is obtained through a graph 

learning technique based on weighted L-1 norm minimization 

[87]. 

4. Graph Encoding/Decoding: The weights associated to the 

graph edges (W) are then coded without compression using 8 

bytes to represent each weight. The elementary encoded 

bitstreams resulting from the first layer, notably HEVC coded 

PIs, and the graph weights, are multiplexed, thus generating the 

final LLF coding bitstream. 

5. PI Interpolation: Since the graph represents the relationship 

between the full set of (original) PIs, by knowing the graph 

weights along with the L1 decoded PIs, L2 PIs are obtained as 

a weighted combination of the L1 decoded PIs [87]: 

 �̂� =  (𝑀 + 𝛾𝐿)−1�̂� . (1) 

In (1), �̂� is a matrix where each row corresponds to a 1D-

vectorized decoded PI (or zeros in case the corresponding PI is 

L2), L is the graph Laplacian matrix obtained from the decoded 

graph weights, and M is an identity matrix with zeros on the 

diagonal indices corresponding to L2 PIs. While L2 PI 

interpolation is performed based on decoded L1 PIs (and graph 

weights), the graph estimation is performed based on the full set 

of original PIs. This original-decoded mismatch may lead to a 

loss in the reconstructed L2 PIs quality, which is expected to be 

more evident for lower bitrates, where the L1 PIs quality is more 

significantly affected by the compression operations. This effect 
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is reduced by introducing the parameter γ in (1), where it acts as 

a compensation mechanism for the L1 PIs quality mismatch 

(between original at encoder and decoded at decoder). The 

reconstruction process in (1) is performed independently for the 

Y, U and V components, with a different γ value (empirically 

obtained) for the luminance and chrominances, although always 

using the same graph weights, which have been estimated from 

the full set of original PIs luminance.  

In terms of the proposed classification taxonomy, the presented 

GB LLF codec corresponds to a Lossy–Perspective Image–

Texture+Geometry–Layered Sets of Images path. Differently 

from the coding solution described in Section IV.A, which 

exploits the correlation between MIs, the GB LLF codec exploits 

the correlation within (Intra) and between (Inter) PIs, which may 

allow a more flexible exploitation of the redundancy as it is not 

constrained by the MLA structure. 

C. 4-Dimensional Array of Images based LLFIC 

In [89], a so-called Multidimensional Light field Encoder using 

4D Transforms and Hexadeca-trees (MuLE-TH) LLF image 

coding solution is proposed, where the intrinsic spatial-angular or 

4D LLF redundancy is exploited as a whole by means of a 4D 

transform, see architecture in Figure 6. The key idea is to take 

advantage of a tree data structure based transform coefficients’ 

bitplanes decomposition to attain a more efficient compression. 

 

Figure 6 – MuLE-TH LLF image encoding architecture. 

The MuLE-TH encoding process proceeds as follows: 

1. 4D Array PIs Structuring: After applying the pre-processing 

steps described at the beginning of Section IV (except the bit 

depth downsampling), the resulting 10-bit YUV 4:2:2 (13×13 

central) PIs are arranged in a 4D array structure; the RGB to 

YUV color space conversion has been performed using 

recommendation ITU-R BT.601-5. 

2. 4D-DCT: Both the luminance and chrominance components 

of the 4D array of PIs are divided, one component at a time, 

into NA×NA×NS×NS (i.e. 4D) blocks, where NA and NS 

correspond to the block sizes in the angular (or inter-PI) and 

spatial (intra-PI) LLF dimensions, respectively. Then, a 4D 

separable Discrete Cosine Transform (DCT) is applied over the 

4D blocks samples; this means that an 1D-DCT is applied to 

each block dimension, one at a time, starting by the two angular 

or inter-PI dimensions, followed by the two spatial or intra-PI 

dimensions. The 4D-DCT transform coefficients are then 

grouped into a 4D array of sub-bands, according to the position 

occupied by each DCT coefficient within the 4D blocks. 

3. Joint Quantization and Clustering: The 4D-DCT 

coefficients are clustered or grouped using a so-called 

hexadeca-tree data structure where each node corresponds to a 

4D block of DCT coefficients for a given sub-band. Each node 

can be further divided into sixteen children nodes or not 

depending on the respective DCT coefficients significance, 

which is determined on a bitplane basis, starting with the most 

significant one; bitplanes are generated by converting the 4D-

DCT coefficients (represented by integer values) into a binary 

representation. A 4D-DCT coefficient is considered non-

significant at bitplane B if its bit in bitplane B and the bits 

corresponding to the bitplanes more significant than B are all 

zero; otherwise, the 4D-DCT coefficient is considered 

significant. When a 4D-DCT coefficients block (for a given 

sub-band) has only non-significant (i.e. zero) 4D-DCT 

coefficients or a minimum size of 1×1×1×1, it will not be 

divided and a ‘0’ is outputted to signal that occurrence; 

otherwise, the 4D-DCT coefficients block will be further 

divided into sixteen sub-blocks and a ‘1’ is output. Whenever 

the block reaches the 1×1×1×1 size, the corresponding DCT 

coefficient value, represented by its (30 – L) most significant 

bits, is sent to the entropy encoder; while 230 is the pre-set value 

for the maximum allowed DCT coefficient amplitude, 2L 

corresponds to the quantization step size. 

The hexadeca-tree decomposition of the 4D-DCT 

coefficients bitplanes successively proceeds from the most 

significant bitplane to the least significant one, where the latter 

is defined by the target quantization step size; a quantization 

step size of 2𝐿 implies that the hexadeca-tree decomposition is 

performed until B = L. By traversing the hexadeca-tree, a 

bitstream is obtained at the bitplane level, where ‘1’ (‘0’) 

indicates that the respective hexadeca-tree node has been 

divided (has not been divided). The hexadeca-tree 

decomposition of the 4D-DCT coefficients bitplanes allows, 

therefore, efficiently representing 4D blocks with only non-

significant (or zero) DCT coefficients with a single 0 symbol 

for each block, while localizing the significant ones. 

Besides the bitstream resulting from the hexadeca-tree 

traversing (indicating the locations of the non-zero 

coefficients), this module also outputs the (quantized) DCT 

coefficients which survived the hexadeca-tree decomposition, 

this means the 4D-DCT coefficients residing in a 1×1×1×1 

block with amplitude larger than 0. 

4. Entropy Coding: Finally, this module creates a bitstream 

exploiting the statistics of all the data output by the previous 

module, i.e. the hexadeca-tree partitions and (quantized) DC 

and AC coefficients streams. This entropy encoder takes into 

account the specific symbol frequencies for the various data 

streams to be entropy coded. In this solution, a context-based 

binary adaptive arithmetic coder is used with three different 

symbol frequency tables, one for each data streams 

aforementioned, i.e. hexadeca-tree partitions and (quantized) 

DC and AC coefficients streams. This module outputs the 

coding bitstream corresponding to the coded LLF. 

In terms of the proposed classification taxonomy, the presented 

MuLE-TH LLF codec corresponds to a Lossy–Perspective 

Image–Texture–Multi-Dimensional Array of Images path. 

Differently from the coding solution described in Section IV.B, 

which exploits the inter-PI and intra-PI correlations separately 

and using different tools, the MuLE-TH codec exploits the 

intrinsic 4D LLF correlation as a whole using the 4D-DCT, which 

may allow a more efficient exploitation of the redundancy. The 

MuLE-TH codec has meanwhile been improved [5] regarding in 

initial description [89], both in terms of compression efficiency 

and random access capability, notably by adopting RD-optimized 

4D block partitioning and quantization strategies, and 

independent coding of each 4D block; 10-bit YUV 4:4:4 PIs are 

supported at the encoder input. The improved MuLE-TH codec, 

hereafter called MuLE, has been adopted as the 4D transform 

mode in the JPEG Pleno standard, due to its good performance in 
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terms of compression efficiency and random access for LLF 

content [99]. For this reason, the coding solution evaluated in 

Section V.D will correspond to the JPEG Pleno standardized 

version of the MuLE codec. 

D. N-Layered Sets of Images based LLFIC 

In [94], a so-called Warping and Sparse Prediction (WaSP) 

based LLFIC solution is proposed, which is based on a layered 

arrangement of the full set of PIs (rendered as described in 

Section II), see encoding architecture in Figure 7. The key idea is 

to predictively encoded each PI layer from (previously encoded) 

PIs belonging to lower layers, thus exploiting the correlation 

between neighboring (or nearby) PIs while providing random 

access. Since the first (and lowest) layer of PIs does not have 

previous layers, the first layer PIs are encoded independently, i.e. 

without exploiting any inter-PI correlation; the WaSP solution 

also encodes depth data for the first layer PIs, which are used to 

provide the higher layers the appropriate information needed to 

compensate the disparity between PIs, i.e. to generate warped PIs 

which allow creating predictions for higher layers PIs. 

 

Figure 7 – WaSP LLF image encoding architecture. 

The WaSP encoding process proceeds as follows: 

1. N-Layer PIs Structuring: The 10-bit RGB 4:4:4 (13×13 

central) PIs are first arranged into a N-layered structure. While 

the WaSP solution defines six as the maximum number of 

(encoding) layers, this value can be adjusted according to the 

application requirements. These layers (except the last one, 

L6) are also known as reference layers because the 

corresponding PIs are used as reference PIs for the prediction 

of higher layers PIs.  

Layer 1 

2. JPEG 2000 Encoding/Decoding: All the L1 data is coded 

with the same coding solution, this means JPEG 2000: 

 L1 PIs – First, the 10-bit RGB L1 PI (the central PI in this 

case) is coded with JPEG 2000 [102][103] to be used as 

reference for the PIs in higher layers. 

 L1 Inverse Depth Maps – An inverse depth map, whose 

values correspond to the ratio between the camera focal 

length and the depth value at each pixel location in L1 PI, is 

also coded with JPEG 2000; this map will be used later to 

synthesize inverse depth maps for PIs in higher layers. The 

inverse depth map is estimated based on the occlusion-aware 

depth estimation method proposed in [104].  

Layers 2 to 6 

3. Reference PIs and Inverse Depth Maps Warping: Given 

the inverse depth map for the reference PIs, the inverse depth 

map for any other PI in higher layers, so-called warped inverse 

depth map, is synthesized by a simple pixel-wise warping 

operation of the inverse depth map values associated to the 

reference PIs [94]. The corresponding reference PIs are then 

warped to the location (or viewing angle) of the PI to code by 

copying the intensity value at position (i, j) of the reference PI 

to the corresponding warped position of the so-called warped 

reference PI. 

4. Warped Reference PIs Merging: The warped reference PIs 

are fused to generate a single high-quality image, so-called 

merged PI, to be used in the prediction stage (Step 7). In this 

case, each merged PI pixel results from the fusion of pixel 

values from different warped reference PIs, depending on 

whether the (PI to code) pixel is or not visible on the reference 

PI. The optimal contribution of each warped reference PI to 

the merged PI is determined through the popular least-squares 

(LS) regression method [94]. 

5. Warped Reference Inverse Depth Maps Merging: The 

warped inverse depth maps are also merged. In this case, a 

simple median strategy is adopted whenever multiple warped 

inverse depth values are obtained for the same merged inverse 

depth map pixel position; when a single warped inverse depth 

value is obtained for a given merged inverse depth map pixel 

position, this is the value used for that position.  

6. Merging Coefficients Encoding/Decoding: For the decoder 

to perform the warped reference PIs merging operation, the 

LS regression model parameters (𝜃) determined in Step 4 have 

to be coded. In this case, the 𝜃 parameters are coded without 

compression using 2 bytes.  

7. Sparse Prediction: To predict the PI to code from the merged 

PI obtained in Step 4, a sparse linear prediction model is built 

for each color component, which are sequentially encoded. 

The model Θ prediction coefficients are estimated using the 

LS method to minimize the error between the color component 

to be predicted and the estimate given by the model.  

8. Prediction Coefficients Encoding/Decoding: This module 

codes vector Θ, which corresponds to the non-zero prediction 

coefficients values, by applying arithmetic coding to the 

binary string representing the non-zero coefficients location 

and Golomb-Rice coding to the amplitude of the predictions 

coefficients. 

9. Convolution: After obtaining the predictions, the prediction 

residue is simply obtained by subtracting a certain color 

component of each pixel in the PI to code from the prediction, 

which in this case is obtained by convolving the merged PI 

with a specific sparse predictor, notably the one obtained in 

Step 7 after the quantization operation above mentioned. 

10. Prediction Residue Encoding/Decoding: The prediction 

residue is coded with JPEG 2000; however, a more efficient 

coding solution can be used. The elementary encoded 

bitstreams resulting from the JPEG 2000 encoded prediction 

residue, the encoded prediction coefficients, the encoded 

merging reference PIs coefficients, and the JPEG 2000 

encoded first layer (both texture and inverse depth maps) are 

multiplexed to generate the final coding bitstream. 

In terms of the proposed classification taxonomy, the presented 

WaSP based LLF codec corresponds to a Lossy–Perspective 

Image–Texture+Geometry–Layered Sets of Images path. As the 

MuLE-TH (and MuLE) LLF image codec, the WaSP based LLF 
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codec also exploits 4D LLF correlation, in this case through the 

(4D) sparse prediction. The WaSP solution has been adopted as 

the 4D predictive mode in the JPEG Pleno standard and has been 

recognized as more efficient than the MuLE solution (aka 4D 

transform mode), also included in JPEG Pleno, for high density 

camera arrays LFs [5]. 

E. Pseudo Multi-View Video based LLFIC 

In [90], a LLFIC solution is proposed where the 2D array of 

PIs (see Section II) is represented as a pseudo multi-view (PMV) 

video sequence, see encoding architecture in Figure 8; this 

solution will be hereafter referred as PMV solution. The key idea 

is to take advantage of conventional multi-view coding standards, 

in this case MV-HEVC, to exploit the intrinsic 4D LLF 

correlation. For that purpose, a 2D prediction structure is 

designed to better adapt to the PIs 2D array structure, thus 

enabling a more efficient spatial-angular redundancy 

exploitation. As in MV-HEVC, the 2D prediction structure is 

used to define the coding dependencies between frames (or PIs in 

this case) of multiple views as well as between video frames in 

the same view; this is done by assigning to each view frame (i.e. 

PI) a so-called prediction level. In other words, PIs assigned with 

a given prediction level are predictively encoded using as 

references previously decoded PIs with lower prediction levels, 

thus exploiting the correlation between PIs. In the PMV solution, 

the prediction structure is also used to determine the quantization 

parameter (QP) to be applied to some PIs. In this process, the MV-

HEVC coding process itself is not changed at all.  

 
Figure 8 – PMV LLF image encoding architecture. 

The main PMV codec encoding steps involve: 

1. PMV PIs Structuring: After applying the pre-processing 

steps described at the beginning of Section IV, the resulting 8-

bit YUV 4:2:0 (13×13 central) PIs are first arranged in a PMV 

video sequence. The PMV video sequence includes 13 views, 

corresponding to the PIs 2D array 13 rows, with 13 frames 

each, corresponding to the PIs 2D array 13 columns.  

2. 2D Prediction Structure Creation: The creation of the 2D 

prediction structure is done through an iterative process, for 

both the horizontal and vertical directions. Thus, for each 

row/column of the PIs 2D array, starting with the middle one, 

the central PI is assigned to the lowest prediction level (P0); the 

first and last PIs within that row/column are also assigned to 

P0. Then, the PI in the middle of two consecutive PIs with a 

prediction level already assigned is assigned to the next 

prediction level. This process is repeated while the number of 

PIs in-between two consecutive PIs with a prediction level 

already assigned is higher than or equal to 2; the remaining PIs 

will be assigned to the highest prediction level, meaning that 

they will not be used as reference frames for prediction. 

Finally, the first and last PIs within the row/column are 

assigned to prediction level 1. 

3. PI-Level QP Determination: The QP for each PI is obtained 

by adding an offset to a reference QP, which is assigned to the 

central PI. For the PIs located in the central row/column of the 

PIs 2D array (except the central PI), the QP offset is set to the 

maximum prediction level value of that PI in the horizontal and 

vertical directions. For the remaining PIs, the QP offset is 

computed based on the PI distance and view-wise decoding 

order with respect to the PI with the lowest prediction level. 

4. MV-HEVC Encoding/Decoding: The 8-bit YUV 4:2:0 PMV 

sequence is coded with MV-HEVC using the 2D prediction 

structure and the QP values previously obtained. The resulting 

encoded bitstream corresponds to the coded LLF image. 

In terms of the proposed classification taxonomy, the presented 

PMV based LLF codec corresponds to a Lossy–Perspective 

Image–Texture–Pseudo Multi-View Video path. Differently from 

the WaSP codec (see Section IV.D), which exploits the 4D LLF 

correlation through 4D sparse prediction, the PMV solution 

exploits the 2D angular (inter-PI) and 2D spatial (intra-PI) 

correlation separately and selects the best one in terms of RDO. 

This may allow a more efficient exploitation of the intrinsic 

spatial-angular redundancy, since the prediction block sizes may 

be independently adjusted to the amount of 2D spatial and 2D 

angular correlations available for exploitation.  

V. LLFIC: PERFORMANCE ASSESSMENT 

In the previous section, some relevant LLFIC solutions 

available in the literature have been reviewed at the light of the 

proposed taxonomy to exercise and demonstrate its potential. To 

have a deeper understanding of the LLFIC field, a direct 

comparative performance analysis is provided in this section. For 

this comparison to be fair, it is essential to select meaningful and 

precise test conditions and evaluation metrics. Considering the 

context, the natural choice for these test conditions and evaluation 

metrics are the JPEG Pleno Light Field Coding (LFC) Common 

Test Conditions (CTC) [10] as they have been defined by the 

most relevant standardization group in the LLFIC arena.  

A. Test Material and Conditions 

The JPEG Pleno LFC CTC test material and conditions for 

LLFIC have been adopted in this paper and are briefly 

summarized here [10]: 

 Test material: Bikes, Danger de Mort, Stone Pillars Outside 

and Fountain&Vincent2 (the central PI for each LLF image is 

shown in Figure 9); these LLF images have been acquired with 

the Lytro Illum (10-bit) LF camera (an unfocused camera) and 

represent natural and outdoor content with objects at different 

depths. These LLF images are part of the JPEG Pleno database, 

publicly available at [105]. 

 Input and output components: Test LLF images are in 

portable pixmap (PPM) file format, i.e. 10-bit images with 

non-interlaced RGB color components, and the output LLF 

images must also be provided in 10-bit PPM file format. For 

performance evaluation purposes, both input and output 

components (10-bit PPM) are converted to (10-bit) YUV 4:4:4 

color space using the ITU-R BT.709-6 recommendation. 

However, within the codec, the LLF images may be coded 

using any color space and bit depth. 

 Number of PIs: Only the central 13×13 PIs, out of the total 

15×15 PIs, are used for coding and performance evaluation 

purposes to avoid using the rather dark PIs associated to the 

vignetting effect, corresponding to the top and bottom rows 

and the most left and most right columns.  
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 Spatial resolution: Each PI contains 625×434 pixels: This 

resolution may need to be adjusted to obtain a spatial resolution 

more compatible with some standard coding solutions, e.g. 

multiple of 8 or 16; however, this adjustment only applies to 

the coding solutions in the Perspective Image class. 

 Target bitrates: 0.001, 0.005, 0.02, 0.2 and 0.75 bits per pixel 

(bpp); these values allow covering a wide range of bitrates (and 

qualities) for different content characteristics. The two lowest 

bitrates may be unachievable for some standard coding 

solutions, as they would require using a QP value higher than 

the maximum allowed. 

These conditions play a key role in a meaningful direct 

comparison of LLFIC solutions since most performance results in 

the literature are not effectively comparable as following different 

conditions. 

    
(a) (b) (c) (d) 

Figure 9 – Central PI for each LLF image: (a) Bikes; (b) Danger de 

Mort; (c) Stone Pillars Outside; and (d) Fountain&Vincent2. 

B. Evaluation Metrics 

The JPEG Pleno LFC CTC evaluation metrics for LLFIC have 

also been adopted in this paper and are briefly summarized here [10]: 

 Bitrate: Number of bits per pixel (bpp), which is defined as 

the ratio between the number of bits for the coded LLF 

representation and the number of pixels in the whole LLF; for 

encoding a LLF composed by 13×13 views (or PIs), each with 

625×434 pixels, the number of pixels in the whole LLF is 

13×13×625×434 = 45 841 250. 

 Objective quality: Average peak signal-to-noise ratio (PSNR) 

and average structural similarity index (SSIM) [106] of the 

luminance component for the whole LLF, represented as 

PSNR-Y and SSIM-Y, respectively, and weighted average of 

the individual PSNR components, i.e. PSNR-Y, PSNR-U and 

PSNR-V, for the whole LLF, represented as PSNR-YUV. The 

average PSNR-Y/SSIM-Y/PSNR-YUV for the whole LLF is 

computed as the average of the PSNR-Ys/SSIM-Ys/PSNR-

YUVs for the 13×13 PIs [10]. 

 Bjøntegaard-deltas: Bjøntegaard delta (BD) rate (BD-rate) 

and BD-PSNR [107], which measures the coding efficiency 

gains in rate and PSNR of a specific LLFIC solution with 

respect to a reference one, in this case the HEVC Main10 

profile (see Section V.C). 

C. Anchor Coding Solutions 

In this section, the defined JPEG Pleno LFC CTC coding 

anchor, i.e. HEVC Inter [10], and other three relevant anchors are 

used for benchmarking. Following the approach adopted by JPEG 

Pleno LFC CTC [10], all coding anchors presented here use a 

4:4:4 chrominance format; although this is not the most efficient 

format in terms of coding, it is used in this context just to establish 

a reference for comparison. The four anchor coding solutions 

used for benchmarking are the following: 

 JPEG 2000: This image codec exploits the spatial correlation 

through a (2D) discrete wavelet transform. When coding with 

JPEG 2000, the 13×13 (10-bit PPM) PIs are coded, all at once, 

as a single 2D image; this allows a better exploitation of the 

spatial correlation than individually coding the PIs as the 2D 

wavelet transform is performed over the whole image. The 

software used for JPEG 2000 coding was OpenJPEG software, 

version 2.3.0 [108]. To obtain different RD points, the 

compression ratio parameter was adjusted to reach the target 

bitrates defined in the JPEG Pleno LFC CTC [10]. 

 HEVC Intra/Inter: This video codec is the best performing 

standard Intra/Inter video coding solution. It adopts a hybrid 

coding architecture [109] to exploit both the spatial and 

temporal correlations. The JPEG Pleno LFC CTC adopted the 

HEVC Main10 profile as anchor for LLFIC [10]. When coding 

with HEVC Inter, the 13×13 (10-bit YUV 4:4:4) PIs are coded 

as a pseudo video sequence, which is generated by scanning 

the 13×13 PIs following a serpentine scanning order [10]. 

When coding with HEVC Intra, the 13×13 (10-bit YUV 4:4:4) 

PIs are coded as a single 2D image, similarly to JPEG 2000; 

this may allow a better exploitation of the spatial correlation, 

particularly around the PI borders. The software used for 

HEVC coding was x.265 software, version 2.3 [110]. To obtain 

different RD points, the rate was adjusted to match the target 

bitrates defined in the JPEG Pleno LFC CTC [10]. 

 VVC Intra: This video codec is currently under development 

by the ITU-T JVET and ISO/IEC MPEG [111] and targets 

becoming the next generation video coding standard, to be 

known as Versatile Video Coding (VVC). As in HEVC, also 

VVC adopts a hybrid coding architecture to exploit both the 

spatial and temporal correlations, using again more powerful 

tools. When coding with VVC Intra, the 13×13 (10-bit YUV 

4:4:4) PIs are coded as a single 2D image, similarly to HEVC 

Intra. The software used for VVC coding was the VTM 

reference software, version 4.0.1 [112]. To obtain different RD 

points, the quantization parameter was adjusted to reach the 

target bitrates defined in the JPEG Pleno LFC CTC [10]. 

Performance results are not reported here for VVC Inter coding 

because, at the time this paper was written, the VTM reference 

software did not support YUV 4:4:4 Inter coding, which is the 

color sub-sampling format used for all the previously presented 

anchor solutions. 

While patent licensing costs for a codec may be affordable for 

some application domains, for others, they may act as an inhibitor 

for codec adoption. Traditionally, standard image codecs are not 

burdened by royalties while standard video codecs are heavily 

burdened. Thus, to take the licensing issues into consideration, 

both royalty-free (JPEG 2000) and non-royalty-free (HEVC and 

VVC) coding anchors have been considered in this paper with the 

understanding that, currently, better compression performance is 

offered by the royalties burdened coding solutions. It is also worth 

noting that the performance results for all the anchor coding 

solutions above presented have been obtained by the authors. 

D. Comparative RD Performance Assessment 

This section reports the RD performance for the five LLFIC 

solutions reviewed in Section IV, namely Bi-SS, GB, MuLE, 

WaSP and PMV, according to the test conditions described 

above. This comparative RD performance analysis will be driven 

by the codecs licensing type, i.e. royalty-free versus non-royalty-

free2, due to the current importance of licensing issues on the 

design and adoption of coding solutions. In practice, the licensing 
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type is also a ‘frontier’ between JPEG and MPEG, which 

typically follow the royalty-free and the non-royalty-free models 

as shown by the set of anchors above. From the five LLFIC 

solutions reviewed in Section IV, Bi-SS, GB and PMV are 

classified as non-royalty-free solutions while MuLE and WaSP 

are classified as royalty-free following their usage or not of non-

royalty-free coding solutions, notably based on HEVC which is 

heavily royalties burdened. In the following, the RD performance 

results will be first analyzed within each licensing type, royalty 

free and non-royalty-free,2and after the best LLFIC solutions 

from each type will be compared. Due to space constrains, only 

PSNR-YUV and SSIM-Y results are reported here; the full set of 

RD performance results may be found in [100]. 

1) Royalty-Free LLFIC Solutions Assessment 

Figure 10 shows the PSNR-YUV RD performance charts for 

the selected royalty-free LLFIC solutions, namely MuLE, WaSP 

and the JPEG 2000 anchor. From the charts, the following 

conclusions may be draw: 

 Royalty-free LLFIC vs. (Royalty-free) JPEG 2000: The 

MuLE and WaSP RD performances are consistently and 

considerably better than the JPEG 2000 RD performance, for 

all LLF images and bitrates, with average BD-rate savings of 

96.3% and 93.8%, respectively; the average BD-rate savings 

are computed over the four selected LLF test images. This is 

an expected behavior due to the JPEG 2000 lack of capability 

in exploiting the LLF intrinsic spatial-angular redundancy, 

which is significantly different from the usual (spatial) 

redundancy present in natural images. 

 MuLE vs. WaSP: The MuLE RD performance is better than 

the WaSP RD performance, for all LLF images and bitrates, 

with average BD-rate savings of 29.4%; the highest BD-rate 

saving is observed for Bikes, which is one of the LLF images 

with the smaller inter-view correlation [113][10]. In general, 

PSNR gains (measured between two RD points with similar 

bitrate belonging to two RD curves) decrease when the bitrate 

increases. This behavior may be explained by the fact that the 

MuLE codec exploits the 4D redundancy mainly through a 4D 

block-based DCT while the WaSP codec relies on a hierarchical 

coding scheme with (sparse) view prediction. As the bitrate 

increases, the view prediction quality for the WaSP codec 

increases, since PIs (angularly) closer to the one to be coded 

are used for the prediction estimation [94]. This translates into 

a lower prediction residue to be encoded and, consequently, in 

bitrate savings for similar quality. The MuLE codec follows a 

simpler strategy by applying always the same adaptive block-

size 4D block-based transform, thus exploiting the 4D 

redundancy in the same way, independently of the bitrate. 

2) Non-Royalty-Free LLFIC Solutions Assessment 

Figure 11 shows the PSNR-YUV RD performance for the 

selected non-royalty-free LLIFC solutions, namely Bi-SS, GB, 

PMV and the defined JPEG Pleno LFC CTC anchor, i.e. HEVC 

Inter [10]; the remaining non-royalty-free anchors (HEVC Intra 

and VVC Intra) will be considered in the following best LLFIC 

 

2 Disclaimer: The “royalty-free”/“non-royalty-free” terminology used in 
Section V does not have any legal value and is simply based on common 
knowledge in the coding community, past (MPEG and JPEG) legacy/tradition and 
commitments made within JPEG. While it is well known that MPEG standards 
like H.264/AVC and HEVC are heavily burdened by royalties, it is also know that 

solutions comparison (see Section V.D.3). From these charts, the 

following conclusions may be obtained: 

 Non-royalty-free LLFIC vs. (Non-royalty-free) HEVC 

Inter: In general, the GB and PMV RD performances are 

better than the HEVC Inter RD performance, for all LLF 

images and bitrates, with average BD-rate savings of 40.1% 

and 49.5%, respectively; the only exception is for the GB 

codec when coding Fountain&Vincent2 at the highest bitrate. 

Moreover, for both GB and PMV codecs, PSNR gains increase 

when the bitrate decreases, for all LLF images. This behavior 

indicates that HEVC Inter has more difficulty in obtaining 

good predictions (thus low residues to code), especially at very 

low bitrates, since it exploits the inter-PI redundancy only in 

one angular dimension, while the PMV and GB codecs exploit 

the inter-PI redundancy in both the angular dimensions. The 

Bi-SS codec outperforms the HEVC Inter codec for the lowest 

and highest bitrates, for all LLF images. This trend is not 

observed for the medium bitrates and varies with the LLF 

images content, with the highest coding losses observed for 

Fountain&Vincent2, the LLF image with the smallest inter-

view correlation [113][10]. This behavior seems to indicate 

that, as long as the bitrate is not too small, HEVC Inter reaches 

medium qualities sooner than Bi-SS but its RD performance 

also saturates quicker that the Bi-SS RD performance; this is 

possibly due to the HEVC Inter difficulty in obtaining good 

predictions as the rate increases allied to the less efficient 

spatial-angular redundancy exploitation, resulting from 

considering only one angular dimension. Moreover, all the 

non-royalty-free LLFIC solutions use apply a 4:2:0 color sub-

sampling to the 4D LLF before encoding; this may lead to a 

color fidelity loss when compared to HEVC Inter, where no 

color sub-sampling has been applied [10]. 

 Bi-SS vs. GB vs. PMV: First, comparing the LLFIC solutions 

in the PI class of the data representation basis dimension, it can 

be noticed that the PMV RD performance is consistently better 

than the GB RD performance, for all LLF images and bitrates, 

with average BD-rate savings of 15.5%. This behavior 

indicates that the spatial-angular redundancy is more 

efficiently exploited through 2D inter-view prediction than 

using only 1D inter-view prediction with disparity 

compensation at the decoder (to help reconstruction the full 4D 

LLF); this is particularly evident at the highest bitrate for the 

LLF images with the smallest inter-view correlation, i.e. the 

Fountain&Vincent2 and Bikes LLF images [113][10]. This 

behavior may be explained by the fact that, the GB solution 

exploits the inter-PI redundancy in a global way, i.e. at the PI 

level (each graph vertex represents an entire PI), while the 

PMV codec does it locally, i.e. at a coding block level, thus 

becoming more adaptive. Comparing the Bi-SS RD 

performance, which corresponds to a MI data representation 

basis, with the GB and PMV RD performances (PI data 

representation basis), it can be observed that the former is 

consistently worse, for all LLF images, and most bitrates; the 

only exception is the highest bitrate, where the Bi-SS RD 

performance is always better than the GB RD performance. 

JPEG standards are traditionally royalty-free or have at least a royalty-free 
baseline codec/profile. Based on this rather consensual knowledge, it is 
reasonable to adopt the proposed “royalty-free”/“non-royalty-free” classifications 
for the selected LLFIC solutions as this is a critical element for the full 
understanding of the LLFIC landscape. 
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This behavior indicates that the spatial-angular redundancy can 

be more efficiently exploited when the LLF data is represented 

in a PI basis than in a MI basis. This may be explained by the 

difficulty in obtaining good (spatial) predictions when the 

spatial characteristics of the image to code differ from the usual 

ones present in natural images; although the Bi-SS codec has a 

tool specifically designed to exploit the inter-MI redundancy, 

it still mostly relies on the HEVC Intra prediction tools. 

3) Best Royalty-Free versus Non-Royalty-Free LLFIC Solutions 

Comparison 

Figure 12 shows the PSNR-YUV RD performance for the best 

performing royalty-free and non-royalty-free LLFIC solutions, 

namely MuLE and PMV, and all the LLFIC anchor coding 

solutions presented in Section V.C. From these charts, the 

following conclusions may be derived: 

 LLFIC solutions vs. Royalty-free coding anchor: The 

MuLE and PMV RD performances are consistently and 

considerably better than the JPEG 2000 RD performance, for 

all LLF images and bitrates, with average BD-rate savings of 

96.3% and 97.3%, respectively. This behavior shows the JPEG 

2000 difficulty in exploiting redundancy significantly different 

from the one present in natural images, such as this spatial-

angular redundancy. 

 LLFIC solutions vs. Non-royalty-free coding anchors: The 

MuLE and PMV RD performances are consistently and 

considerably better than the HEVC Intra and VVC Intra RD 

performances, for all LLF images and bitrates, with average 

BD-rate savings of 93.6% and 91.1%, respectively. This is an 

expected behavior since the available angular redundancy is 

not exploited, or is barely exploited at the PIs borders, by both 

the HEVC Intra and VVC Intra anchors. Regarding the HEVC 

Inter anchor, both MuLE and PMV always present a better RD 

performance for all LLF images and bitrates, with average BD-

rate savings of 25.5% and 49.5% respectively. This behavior 

shows that only by using 2D inter-view prediction (as in MuLE 

and PMV codecs) the available angular redundancy can be 

fully exploited; the HEVC Inter codec also exploits the angular 

redundancy but only between ‘temporally’ adjacent views (1D 

inter-view prediction). The PSNR gains with respect to the 

anchors tend to reduce as the bitrate increases, for all LLF 

images. At low bitrates, all data is ‘difficult’ to code; however, 

if the coding solution is appropriately ‘equipped’ with tools 

targeting the LLF spatial-angular redundancy exploitation, 

such as 2D inter-view prediction, the coding efficiency can be 

greatly improved; this is precisely what happens with both 

MuLE and PMV when compared to the anchor coding 

solutions, notably HEVC Intra/Inter and VVC Intra.  

 MuLE vs. PMV: The PMV RD performance is consistently 

better than the MuLE RD performance for low to medium 

bitrates, for all LLF images. However, at the highest bitrate, 

the MuLE RD performance gets similar to or better than the 

PMV RD performance. This behavior indicates that, as the 

bitrate and quality increase, the spatial-angular redundancy is 

more efficiently exploited through a 4D transform than using 

inter-view prediction; this may be explained by the difficulty 

in obtaining a good enough inter-view prediction (resulting in 

a low residue to code) as the bitrate increases. 

Figure 13 shows the SSIM-Y RD performance for the best 

performing royalty-free and non-royalty-free LLFIC solutions, 

namely MuLE and PMV, and all the LLFIC anchor coding 

solutions presented in Section V.C. From these charts, the 

following conclusions may be draw: 

 LLFIC solutions vs. Royalty-free coding anchor: The SSIM 

RD performances for both MuLE and PMV are consistently 

and considerably better than the JPEG 2000 SSIM RD 

performance, for all LLF images and bitrates. This behavior 

shows that the 4D redundancy exploitation impacts on the 

perceptual quality of the decoded PIs; although both the LLFIC 

solutions and the JPEG anchor exploit the available spatial-

angular redundancy, JPEG 2000 exploits it in a less efficient 

way (for the reason presented in Section V.D.1), thus resulting 

into a lower perceptual (decoded) quality. 

 LLFIC solutions vs. Non-royalty-free coding anchors: The 

SSIM RD performances for both MuLE and PMV are also 

consistently and considerably better than the HEVC Intra and 

VVC Intra SSIM RD performances, for all LLF images and 

bitrates. Regarding the HEVC Inter anchor, both MuLE and 

PMV overcome the SSIM RD performance, for all LLF images 

and bitrates, although by a rather small margin at the highest 

bitrate. This behavior indicates that, at the highest bitrate, the 

LLFIC decoded qualities are so high that, perceptually 

speaking, they all look alike. 

 MuLE vs. PMV: The PMV SSIM RD performance is 

consistently better than the MuLE SSIM RD performance, for 

all LLF images and bitrates except for the highest bitrate, 

where both coding solutions achieve a similar performance (for 

the reason above mentioned). This behavior may be explained 

by the fact that the PMV performance, which is based on the 

royalties-burdened MV-HEVC standard, benefits from the 

usage of powerful coding tools, e.g. CABAC based entropy 

coding, which the MuLE codec avoids to stay royalty-free. 

Moreover, while PMV uses very mature tools, resulting from 

decades of research, MuLE uses some recently designed tools, 

still without much refinement and optimization. 

In summary, some main conclusions may be drawn from the 

previous comparative RD performance assessment:  

 The PI representation basis seems to be better performing than 

the MI basis when it comes to 4D redundancy exploitation; 

moreover, no metadata is required at the decoder side for 

rendering/display purposes. 

 The data type coded for the best performing LLFIC solutions 

is texture-only, so not requiring any geometry-related data; in 

fact, estimating high quality geometry-related data, e.g. depth 

or disparity, is a rather complex task and it is only worth to 

exploit this type of predictions if good estimations are available, 

what may be critically difficult for certain types of content. 

 Adopting a data structure which is intrinsically 4D seems to 

allow a more natural and efficient exploitation of the spatial-

angular redundancy, which is naturally 4D. 

Among the best performing LLFIC solutions there is one that is 

royalty-free and has recently been adopted by the JPEG Pleno 

standard. Considering that the image coding landscape is typically 

royalty-free, this feature might be paramount for its market adoption 

in opposition to other efficient LLFIC solutions which are, however, 

royalties burdened. This will, naturally, depend on the application 

scenario requirements and proposed licensing model. 
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(a) (b) (c) (d) 

Figure 10 – PSNR-YUV RD performance for royalty-free LLF coding solutions: (a) Bikes; (b) Danger de Mort; (c) Stone Pillars Outside; and (d) 

Fountain&Vincent2. 

    
(a) (b) (c) (d) 

Figure 11 – PSNR-YUV RD performance for non-royalty-free LLF coding solutions: (a) Bikes; (b) Danger de Mort; (c) Stone Pillars Outside; and 

(d) Fountain&Vincent2. 

    
(a) (b) (c) (d) 

Figure 12 – PSNR-YUV RD performance for the best performing royalty-free and non-royalty-free LLF coding solutions: (a) Bikes; (b) Danger 

de Mort; (c) Stone Pillars Outside; and (d) Fountain&Vincent2. 

    
(a) (b) (c) (d) 

Figure 13 – SSIM-Y RD performance for the best performing royalty-free and non-royalty-free LLF coding solutions: (a) Bikes; (b) Danger de 

Mort; (c) Stone Pillars Outside; and (d) Fountain&Vincent2. 
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