
MOTION-BASED SHAPE ERROR CONCEALMENT FOR OBJECT-BASED VIDEO

Luis Ducla Soares, Fernando Pereira
Instituto Superior Técnico / Instituto de Telecomunicações

ABSTRACT

In this paper, an original motion-based shape error concealment
technique, especially useful for object-based video applications
in error-prone environments such as mobile networks, is
proposed. It is assumed that the shape of the corrupted object at
hand is in the form of a binary alpha plane and some of the shape
data is missing due to channel errors. To conceal the corrupted
shape, the decoder starts by assuming that the alpha plane
changes in consecutive time instants can be described by a
global motion model. This way, based on locally estimated
global motion parameters, the decoder tries to conceal the
corrupted alpha plane by global motion compensating the shape
data from the previous time instant. Then, since not all alpha
plane changes can be perfectly described by global motion, an
additional local motion refinement is applied to deal with areas
of the object that have significant motion.

1. INTRODUCTION

The appearance of the MPEG-4 object-based audiovisual coding
standard [1] opened up the way for new video services, where
scenes are understood as a composition of objects. However, in
order to make these object-based services available in error-
prone environments, such as mobile networks or the Internet,
with an acceptable quality, appropriate error concealment
techniques dealing with both shape and texture data are
necessary.

While (frame-based) texture concealment schemes are
abundant in the literature and can with more or less adjustments
be adapted to work for object-based video, shape concealment
schemes are just starting to appear. In particular, the method
proposed in [2] is based on the idea that the contour changes
(i.e., the boundary of the shape data) for a given video object, in
consecutive time instants, can be described by a global motion
model. Based on this assumption, the global motion parameters
are estimated at the encoder and sent along with the encoded
bitstream to the decoder. This way, when errors occur and cause
the contour to be broken in several places, the decoder can easily
(global) motion compensate the contour from the previous time
instant using the information sent by the encoder and restore the
corrupted contour. To recover the shape, the decoder has simply
to fill in the concealed contour.

The first drawback of the technique described above is that
the global motion parameters are computed at the encoder, when
the sequence is being encoded. These parameters are transmitted
to the decoder using a separate stream, which according to [2]
may represent about a 5% bit rate increase. This is a serious
limitation because the technique can only be used if both the
encoder and decoder support it, which is very unlikely in such a
competition-driven market with many manufacturers since this
type of stream is not normatively specified. In addition, other
issues must be considered, such as how to synchronize this new
stream with the visual data stream and what should be done if
this stream is also corrupted. The second drawback of the type of
technique described above is that it considers only global motion
compensation to do the concealment. Because of this, it is not
able to adequately deal with shapes that have some local motion,

which significantly limits its concealment performance for less
constrained shapes.

2. PROPOSED MOTION-BASED SHAPE ERROR
CONCEALMENT ALGORITHM

In this paper, the idea of using global motion to conceal shape
errors at the decoder is extended while overcoming the two
major drawbacks mentioned above. In the proposed technique,
all error concealment related processing is performed at the
decoder, which no longer has to rely on additional (non-
normative) information sent by the encoder. This allows the
proposed technique to be used even if the encoder knows
nothing about the concealment techniques implemented at the
decoder, which is usually the case when terminals from different
manufacturers are used, even if the same standard coding format
is used. This way, the additional bit rate that was used in [2] for
the extra stream carrying the global motion parameters can be
used for something else, like increasing the shape intra
refreshment rate or improving the texture quality. In addition to
this, and in order to deal with shapes that have some local
motion, the proposed concealment technique also includes a
local motion refinement step.

In this paper, it is assumed that the alpha planes have been
encoded with some kind of block-based technique before being
delivered, such as (but not necessarily) the solutions specified in
the MPEG-4 Visual standard [1]. It is also considered that
bitstream errors will manifest themselves in the form of bursts of
consecutive erroneous 16×16 blocks, which is the most common
case, at least in video coding standards.

Since the global motion parameters are no longer sent by the
encoder, they have to be locally computed at the decoder. This is
only possible because the decoded video data at a given time
instant is usually not completely corrupted, since errors typically
manifest themselves as bursts of consecutive erroneous blocks.
With the remaining correctly decoded shape and texture data, the
decoder can extract the necessary global motion parameters.

After the global motion parameters have been determined,
they can be used to motion compensate the alpha plane of the
previous time instant. This way, the erroneous shape blocks in
the corrupted alpha plane being concealed can be simply
replaced by the co-located shape blocks in the motion
compensated previous alpha plane. Assuming that the global
motion model can accurately describe the shape motion, this
concealment alone should be able to produce rather good results.
However, in many cases, this does not happen, due to the
existence of local motion in some areas of the shape. Therefore,
to avoid significant shape artifacts when concealing erroneous
blocks in areas with local motion, an additional local motion
refinement scheme has been introduced in the concealment
process. In this scheme, the available blocks surrounding an
erroneous shape block are used to determine if any local motion
exists; if so, a local motion vector is estimated and used to find a
better replacement block from the previous alpha plane for the
erroneous shape block.

The block diagram for the proposed temporal shape error
concealment technique is presented in Figure 1, where each
block corresponds to one of the three consecutive steps in the
concealment process.

 Global
Motion

Parameters
Computation

Global Motion
Compensation
Concealment

Concealed
Alpha
Plane

Alpha
Plane to
Conceal

Local
Motion

Refinement

Figure 1 – Motion-based shape error concealment architecture

In order to understand better the shape concealment process,
an illustrative example will be given before detailing each of the
steps above in the following sections. In this example, the alpha
plane in Figure 2 (a) has been corrupted, as illustrated in Figure
2 (b). Based on the estimated global motion parameters (using
the information in Figure 2 (b)), the previous VOP is motion
compensated and Figure 2 (c) is obtained. After that, the
corrupted blocks are replaced with the corresponding ones in the
global motion compensated previous VOP, which gives the
concealed alpha plane shown in Figure 2 (d); this concealed
alpha plane shows significant artifacts in the areas where
significant local motion exists, notably in the racket zone. After
the local motion refinement, the concealed alpha plane in Figure
2 (e) is finally obtained.

(a)

(b) (c)

(d) (e)

Figure 2 – Temporal shape concealment process for the Stefan
video object: (a) Original uncorrupted alpha plane; (b)
Corrupted alpha plane; (c) Global motion compensated

previous alpha plane; (d) Concealed alpha plane without local
motion refinement; (e) Concealed alpha plane with local motion

refinement

2.1 Global motion parameters estimation

Before computing the global motion parameters, a global motion
model has to be chosen from the ones available. The major
difference between existing motion models is basically related to
their complexity and, thus, their capacity to describe complicated
motion trajectories. Since the motion of the shape data between
consecutive time instants is typically quite simple, a simple
model should be enough. However, it is always possible to
replace the selected motion model with a more complex one,
since the proposed technique does not directly depend on the
type of motion model that is used, as long as one is used. This
way, the affine four parameter model, which is certainly the
simplest and most widely used global motion model, was
selected. A description of how this model is derived can be
found in [3], as well as the types of motion that are possible to
describe with it, notably: i) change of the camera focal length
(i.e., zoom or scale); ii) rotation around an axis normal to the
camera axis (i.e., pan); and iii) rotation around the camera axis.

With this model, when two time instants and forward motion
are considered, the transparency value of a shapel with
coordinates (x’,y’) in the most recent time instant can be
computed from the shapel with coordinates (x,y) in the previous
time instant by the following expression:

+

⋅

−

=

4

3

12

21

'

'

c

c

y

x

cc

cc

y

x (1)

where c1, c2, c3 and c4 are the global motion parameters.
Since the alpha plane is completely uniform on either side of

the video object contour (opaque inside the object and
transparent outside), it does not have any internal motion and,
therefore, its motion basically corresponds to the motion of the

contour. This way, to determine the motion of the shape data, the
first step is to extract what is left of the video object contour
from the correctly decoded shape data.

The next step is to determine, for each point of the extracted
contour, the corresponding point in the previous alpha plane;
this is the same as determining a motion vector for each contour
point. For this, a shape context around the considered contour
point is considered; the used context is a block of 16×16 shapels
and the search range is 32 shapels (16 to each side) in both
directions, but these values can easily be changed. Here, the
accuracy of the estimation is favored and, therefore, an
exhaustive search pattern is used. However, this could be
replaced with a faster, although sub-optimal, algorithm such as a
three step hierarchical search [4]. This search for the
corresponding point in the previous alpha plane can be quite a
daunting task because, in many cases, several perfectly matching
candidates can be found, leading to disastrous results in terms of
global motion parameters. Therefore, to improve the global
motion estimation, a 16×16 luminance context around the
considered contour points will be used because the shape context
alone gives too many inconsistencies, leading to rather
inaccurate motion parameters.

After all the corresponding points have been found for the
current and previous alpha planes, the global motion parameters
are determined by finding linear least squares estimates of c1, c2,
c3 and c4, as described in [3].

2.2 Global motion compensation concealment

After the global motion parameters are known, the motion
compensation itself is quite straightforward. The objective of this
module is to take the correctly decoded (or partly concealed)
alpha plane from the previous time instant and global motion
compensate it to the current time instant, so that it can be used to
conceal the corrupted parts of the current alpha plane. To do
this, all the decoder has to do is consider all the points with
coordinates (x,y) in the previous alpha plane and compute their
new coordinates (x’,y’) in the current time instant where the
concealment is to be applied, by using Equation (1). To make the
motion compensation more efficient, only the points with
coordinates (x,y) that correspond to opaque shapels in the
previous alpha plane have to be considered. Of course, motion
compensation can be applied to both shape and texture data.

After the previous alpha plane has been motion
compensated, the concealment itself, which is simply a cut and
paste operation, can start. In the corrupted alpha plane, all the
corrupted shape blocks are replaced with the corresponding
alpha plane blocks from the motion compensated previous alpha
plane. The same can be done for the texture data.

To better understand this procedure, Figure 3 should be
considered. In Figure 3 (a), the corrupted alpha plane is shown.
In Figure 3 (b), the previous global motion compensated alpha
plane is shown, where the shaded areas correspond to the
corrupted alpha blocks in the current corrupted alpha plane. By
simply copying these shaded blocks to the corrupted alpha plane,
Figure 3 (c) is obtained, where the concealed blocks are shaded.

(a)

(b)

(c)

Figure 3 – Replacement of corrupted alpha plane blocks: (a)
Corrupted alpha plane; (b) Previous global motion

compensated alpha plane; (c) Concealed alpha plane

2.3 Local motion refinement

As illustrated in Figure 2, for alpha planes that have significant
local motion, the global motion compensation concealment
process described in Section 2.2 is not enough to produce good
results. Therefore, to deal with the areas that have local motion,
a refinement is necessary. However, before trying to refine the
proposed concealment method, it is important to distinguish two
types of concealed blocks: blocks that have at least one correctly
decoded neighboring (shape) block and blocks that only have
neighboring blocks that have been (shape) concealed themselves.
Since the former have much more reliable neighboring shape
data (because it has been correctly decoded), the refinement
should start with those. The local motion concealment
refinement is applied to the latter blocks only afterwards. Thus,
the refinement procedure consists of two consecutive steps
described in the next two sections.

2.3.1 Local motion refinement of shape blocks with correct
neighbors

To refine the concealment of blocks that have at least one
correctly decoded neighboring block, the shape blocks in the
concealed alpha plane are scanned from top to bottom, left to
right. For each concealed shape block that has at least one
correctly decoded neighboring block, the decoder has to
determine if it has been acceptably concealed with the global
motion compensation alone. This is done by inspecting the
correctly decoded neighboring shape blocks and comparing them
with the shape blocks that would have been obtained if global
motion compensation concealment had also been applied to
them. If the number of different shapels does not exceed 90 for
all the correctly decoded neighboring shape blocks and 30 for
any individual block, the shape block at hand is considered to
have been adequately concealed and no further processing is
needed for it. Otherwise, local motion refinement will be
applied. For this, a motion vector is determined for each one of
the non-transparent correctly decoded shape blocks surrounding
the shape block in question. This is done by applying a typical
block-matching motion estimation algorithm to the current
luminance plane and the previous luminance plane. Then, local
motion compensated concealment is tried for the shape block at
hand with the determined motion vectors (i.e., replacing the
corrupted shape block with the shape block from the previous
alpha plane indicated by the determined motion vector). In
addition to the various individual motion vectors, the average
motion vector is also tried. If some of the neighboring shape
blocks were not correctly decoded but have already been
(concealed and) local motion refined and, therefore, already have
local motion vectors associated to them, they are also included in
the computation of the average motion vector. From the tested
motion vectors, the one that will be used to perform the final
local concealment is the one that minimizes a shape border
continuity metric (SCM) for the concealed shape block. This
metric is defined as:
 ∑ −=

i
ii ssSCM ˆ (2)

where si corresponds to the shapels in the four borders of the
concealed shape block being refined and ŝi corresponds to the
shapels across the border from si. To compute the SCM, only the
neighboring blocks that have either been correctly decoded or
already undergone local refinement are taken into account.

2.3.2 Local motion refinement of shape blocks with no
uncorrupted neighbors

To refine the concealment of the shape blocks that do not have
any correctly decoded neighboring blocks, the shape blocks in

the concealed alpha plane are scanned from top to bottom, left to
right. For each concealed shape block that does not have any
correctly decoded neighboring block, the decoder has to
determine if any of the neighboring shape blocks have been
locally refined. If not, nothing is done at this time for this shape
block. If, on the other hand, some of the neighboring shape
blocks have already been locally refined, their previously
determined (i.e., in the previous section) motion vectors should
be considered and used to perform local motion compensated
concealment for the shape block at hand. As in Section 2.3.1, the
average motion vector is also tried. To choose which motion
vector will be used to perform the final concealment, the metric
in Equation (2) will also be used. The same motion vector can
also be used to refine the concealed texture data.

In order to guarantee that all the necessary shape blocks are
refined, the procedure described above has to be performed
again from bottom to top, right to left.

3. PERFORMANCE EVALUATION

In order to evaluate the proposed motion-based shape
concealment technique, the Akiyo, Bream and Stefan video
objects have been encoded according to the MPEG-4 Core
Visual Object Type. In terms of MPEG-4 video error resilience
tools, resynchronization markers and data partitioning with
reversible variable length codes were used. Additionally, since it
was important (for the estimation of global motion parameters)
to avoid that the decoded texture quality degrade too much, a
periodic intra refreshment scheme was used at the encoder. As
for the shape data, it was intra coded at each time instant.

Here, instead of adding errors directly to the bitstreams, the
decoder simply ignored the video packets randomly with a given
packet loss rate (following a uniform distribution which
produces bursts of corrupted shape blocks), thus allowing to
evaluate the performance of the concealment technique
independently of the decoder error detection capabilities. For
each one of the studied loss rates, each video object has been
decoded 50 times (i.e., corresponding to 50 different error
patterns or runs), while applying the proposed motion-based
shape error concealment technique to the corrupted alpha planes.

To evaluate the shape quality, the Dn metric used by MPEG
is adopted, which is defined as the number of different shapels
between the decoded and original alpha planes divided by the
total number of opaque shapels in the original alpha plane.
Additionally, since the proposed technique can also be applied
to the texture of the video object, whose decoded texture quality
is here very important for the estimation of the global motion
parameters, numerical texture quality results will also be
presented using the PSNR metric. However, since arbitrarily
shaped video objects are used, the PSNR metric is only
computed over the pixels that belong to both the decoded VOP
being evaluated and the original VOP.

Due to space limitation, results are only shown here for the
CIF version of the Stefan video object; the lowest acceptable
frame rate for this sequence (i.e., 15 fps) was used because it
corresponds to the most critical situation in terms of temporal
error concealment. At this frame rate, an acceptable texture
quality can be obtained by encoding the sequence at 128 kbps.
As for the video packet size, this was chosen to be 1060 bits,
which corresponds to eight video packets per VOP. With these
parameters, an average error-free decoded texture quality of
30.46 dB is obtained. The obtained Dn for error-free conditions
is obviously 0.00% because MPEG-4 shape coding is lossless.

In Table 1, Dnlow and Dnhigh correspond, respectively, to the
average Dn values associated with the best and the worst runs in
terms of shape quality. As for Dnavg, it corresponds to the mean

of the average Dn values associated with the 50 different runs for
each test case. In Table 2, PSNRlow, PSNRavg and PSNRhigh have
equivalent definitions.

Table 1 – Dn values for the Stefan video object
Video packet

loss rate
Dnlow [%] Dnavg [%] Dnhigh [%]

1% 0.09 0.32 0.57
5% 0.92 1.67 2.55

10% 2.25 3.42 5.09
20% 6.17 7.45 9.79

Table 2 – PSNR values for the Stefan video object
Video packet

loss rate
PSNRlow [dB] PSNRavg [dB] PSNRhigh [dB]

1% 27.77 28.99 29.89
5% 23.82 25.05 26.20

10% 21.35 22.50 23.66
20% 18.94 19.59 20.40

As expected, Table 1 shows that the Dn values increase
gradually as the packet loss rate increases, going from values
well below 1% to values above 5%. Notice that Dn values below
1% correspond to hardly noticeable artifacts, while for values
above 5% the artifacts start to become quite visible. As for the
PSNR values in Table 2, they gradually decay as the packet loss
rate increases, which was also expected.

In order to illustrate the results in Table 1 and Table 2, the
shape and texture of a given decoded VOP (VOP 3 in the
original 300 VOP sequence) is used. In Figure 5, three different
corrupted versions of the alpha plane in Figure 4 (a) and the
texture in Figure 4 (b) are shown, in addition to the
corresponding concealed alpha planes and textures. These three
versions correspond to three of the 50 different error patterns for
a video packet loss rate of 20% (the worst tested). As can be
seen in Figure 5, although some artifacts are visible, the obtained
results are visually quite acceptable taking into account the
complexity of the shape and the amount of errors. The Dn values
for the concealed alpha planes shown are: 11.50% for error
pattern 1, 8.86% for error pattern 2 and 7.58% for error pattern
3. As for the corresponding PSNR values, they are 24.41 dB for
pattern 1, 26.91 dB for pattern 2 and 21.91 dB for pattern 3. The
uncorrupted texture has a PSNR value of 30.31 dB.

4. FINAL REMARKS

In this paper, a temporal motion-based technique was proposed
to conceal shape errors in binary alpha planes or in the binary
support of gray scale shapes for object-based video coding
systems, such as those based on the MPEG-4 standard. Results
have been presented showing the ability of this technique to
recover lost shape data with rather small distortion, even for
cases where local motion exists and the global motion model
alone is not able to perfectly describe the shape motion.

Finally, it is important to emphasize the relevance of shape
concealment techniques, not only to achieve an acceptable shape
quality, but also because the decoded texture quality obtained is
highly dependent on the quality of the shape data (i.e., the
texture data can only be correctly decoded if the shape data is
correct). Therefore, for object-based video applications to be
actually deployed in error-prone environments, robust shape
error concealment techniques will have to be available.

(a)

(b)

Figure 4 – Stefan video object: (a) alpha plane; (b) texture

(a)

(b)

(c)

Figure 5 – Corrupted and respective concealed alpha planes
and textures for the Stefan video object with a video packet loss

rate of 20% for: (a) error pattern 1; (b) error pattern 2; (c)
error pattern 3

5. ACKNOWLEDGMENT

The work presented was developed within VISNET, a European
Network of Excellence (http://www.visnet-noe.org).

6. REFERENCES

[1] ISO/IEC 14496-2, “Information Technology – Coding of
Audio-Visual Objects, Part 2: Visual,” Dec. 1999.
[2] P. Salama, C. Huang, “Error Concealment for Shape
Coding,” Proc. of ICIP 2002, Rochester, NY, USA, Vol. 2, pp.
701-704, Sep. 2002.
[3] A. Zakhor, F. Lari, “Edge Based 3-D Camera Motion
Estimation with Application to Video Coding,” IEEE Trans. on
Image Proc., Vol. 2, No. 4, pp. 481-498, Oct. 1993.
[4] M. Bierling, R. Thoma, “Motion Compensating Field
Interpolation Using a Hierarchical Structure Displacement
Estimator,” Signal Processing, Vol. 11, No. 4, pp. 387-404,
Dec. 1988.

