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ABSTRACT 

In this paper, an original motion-based shape error concealment 
technique, especially useful for object-based video applications 
in error-prone environments such as mobile networks, is 
proposed. It is assumed that the shape of the corrupted object at 
hand is in the form of a binary alpha plane and some of the shape 
data is missing due to channel errors. To conceal the corrupted 
shape, the decoder starts by assuming that the alpha plane 
changes in consecutive time instants can be described by a 
global motion model. This way, based on locally estimated 
global motion parameters, the decoder tries to conceal the 
corrupted alpha plane by global motion compensating the shape 
data from the previous time instant. Then, since not all alpha 
plane changes can be perfectly described by global motion, an 
additional local motion refinement is applied to deal with areas 
of the object that have significant motion. 

1. INTRODUCTION 

The appearance of the MPEG-4 object-based audiovisual coding 
standard [1] opened up the way for new video services, where 
scenes are understood as a composition of objects. However, in 
order to make these object-based services available in error-
prone environments, such as mobile networks or the Internet, 
with an acceptable quality, appropriate error concealment 
techniques dealing with both shape and texture data are 
necessary. 

While (frame-based) texture concealment schemes are 
abundant in the literature and can with more or less adjustments 
be adapted to work for object-based video, shape concealment 
schemes are just starting to appear. In particular, the method 
proposed in [2] is based on the idea that the contour changes 
(i.e., the boundary of the shape data) for a given video object, in 
consecutive time instants, can be described by a global motion 
model. Based on this assumption, the global motion parameters 
are estimated at the encoder and sent along with the encoded 
bitstream to the decoder. This way, when errors occur and cause 
the contour to be broken in several places, the decoder can easily 
(global) motion compensate the contour from the previous time 
instant using the information sent by the encoder and restore the 
corrupted contour. To recover the shape, the decoder has simply 
to fill in the concealed contour. 

The first drawback of the technique described above is that 
the global motion parameters are computed at the encoder, when 
the sequence is being encoded. These parameters are transmitted 
to the decoder using a separate stream, which according to [2] 
may represent about a 5% bit rate increase. This is a serious 
limitation because the technique can only be used if both the 
encoder and decoder support it, which is very unlikely in such a 
competition-driven market with many manufacturers since this 
type of stream is not normatively specified. In addition, other 
issues must be considered, such as how to synchronize this new 
stream with the visual data stream and what should be done if 
this stream is also corrupted. The second drawback of the type of 
technique described above is that it considers only global motion 
compensation to do the concealment. Because of this, it is not 
able to adequately deal with shapes that have some local motion, 

which significantly limits its concealment performance for less 
constrained shapes. 

2. PROPOSED MOTION-BASED SHAPE ERROR 
CONCEALMENT ALGORITHM 

In this paper, the idea of using global motion to conceal shape 
errors at the decoder is extended while overcoming the two 
major drawbacks mentioned above. In the proposed technique, 
all error concealment related processing is performed at the 
decoder, which no longer has to rely on additional (non-
normative) information sent by the encoder. This allows the 
proposed technique to be used even if the encoder knows 
nothing about the concealment techniques implemented at the 
decoder, which is usually the case when terminals from different 
manufacturers are used, even if the same standard coding format 
is used. This way, the additional bit rate that was used in [2] for 
the extra stream carrying the global motion parameters can be 
used for something else, like increasing the shape intra 
refreshment rate or improving the texture quality. In addition to 
this, and in order to deal with shapes that have some local 
motion, the proposed concealment technique also includes a 
local motion refinement step. 

In this paper, it is assumed that the alpha planes have been 
encoded with some kind of block-based technique before being 
delivered, such as (but not necessarily) the solutions specified in 
the MPEG-4 Visual standard [1]. It is also considered that 
bitstream errors will manifest themselves in the form of bursts of 
consecutive erroneous 16×16 blocks, which is the most common 
case, at least in video coding standards. 

Since the global motion parameters are no longer sent by the 
encoder, they have to be locally computed at the decoder. This is 
only possible because the decoded video data at a given time 
instant is usually not completely corrupted, since errors typically 
manifest themselves as bursts of consecutive erroneous blocks. 
With the remaining correctly decoded shape and texture data, the 
decoder can extract the necessary global motion parameters. 

After the global motion parameters have been determined, 
they can be used to motion compensate the alpha plane of the 
previous time instant. This way, the erroneous shape blocks in 
the corrupted alpha plane being concealed can be simply 
replaced by the co-located shape blocks in the motion 
compensated previous alpha plane. Assuming that the global 
motion model can accurately describe the shape motion, this 
concealment alone should be able to produce rather good results. 
However, in many cases, this does not happen, due to the 
existence of local motion in some areas of the shape. Therefore, 
to avoid significant shape artifacts when concealing erroneous 
blocks in areas with local motion, an additional local motion 
refinement scheme has been introduced in the concealment 
process. In this scheme, the available blocks surrounding an 
erroneous shape block are used to determine if any local motion 
exists; if so, a local motion vector is estimated and used to find a 
better replacement block from the previous alpha plane for the 
erroneous shape block. 

The block diagram for the proposed temporal shape error 
concealment technique is presented in Figure 1, where each 
block corresponds to one of the three consecutive steps in the 
concealment process. 
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Figure 1 – Motion-based shape error concealment architecture 

In order to understand better the shape concealment process, 
an illustrative example will be given before detailing each of the 
steps above in the following sections. In this example, the alpha 
plane in Figure 2 (a) has been corrupted, as illustrated in Figure 
2 (b). Based on the estimated global motion parameters (using 
the information in Figure 2 (b)), the previous VOP is motion 
compensated and Figure 2 (c) is obtained. After that, the 
corrupted blocks are replaced with the corresponding ones in the 
global motion compensated previous VOP, which gives the 
concealed alpha plane shown in Figure 2 (d); this concealed 
alpha plane shows significant artifacts in the areas where 
significant local motion exists, notably in the racket zone. After 
the local motion refinement, the concealed alpha plane in Figure 
2 (e) is finally obtained. 

 
(a) 

 
(b) (c) 

 
(d) (e) 

Figure 2 – Temporal shape concealment process for the Stefan 
video object: (a) Original uncorrupted alpha plane; (b) 
Corrupted alpha plane; (c) Global motion compensated 

previous alpha plane; (d) Concealed alpha plane without local 
motion refinement; (e) Concealed alpha plane with local motion 

refinement 

2.1 Global motion parameters estimation 

Before computing the global motion parameters, a global motion 
model has to be chosen from the ones available. The major 
difference between existing motion models is basically related to 
their complexity and, thus, their capacity to describe complicated 
motion trajectories. Since the motion of the shape data between 
consecutive time instants is typically quite simple, a simple 
model should be enough. However, it is always possible to 
replace the selected motion model with a more complex one, 
since the proposed technique does not directly depend on the 
type of motion model that is used, as long as one is used. This 
way, the affine four parameter model, which is certainly the 
simplest and most widely used global motion model, was 
selected. A description of how this model is derived can be 
found in [3], as well as the types of motion that are possible to 
describe with it, notably: i) change of the camera focal length 
(i.e., zoom or scale); ii) rotation around an axis normal to the 
camera axis (i.e., pan); and iii) rotation around the camera axis. 

With this model, when two time instants and forward motion 
are considered, the transparency value of a shapel with 
coordinates (x’,y’) in the most recent time instant can be 
computed from the shapel with coordinates (x,y) in the previous 
time instant by the following expression: 
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where c1, c2, c3 and c4 are the global motion parameters. 
Since the alpha plane is completely uniform on either side of 

the video object contour (opaque inside the object and 
transparent outside), it does not have any internal motion and, 
therefore, its motion basically corresponds to the motion of the 

contour. This way, to determine the motion of the shape data, the 
first step is to extract what is left of the video object contour 
from the correctly decoded shape data. 

The next step is to determine, for each point of the extracted 
contour, the corresponding point in the previous alpha plane; 
this is the same as determining a motion vector for each contour 
point. For this, a shape context around the considered contour 
point is considered; the used context is a block of 16×16 shapels 
and the search range is 32 shapels (16 to each side) in both 
directions, but these values can easily be changed. Here, the 
accuracy of the estimation is favored and, therefore, an 
exhaustive search pattern is used. However, this could be 
replaced with a faster, although sub-optimal, algorithm such as a 
three step hierarchical search [4]. This search for the 
corresponding point in the previous alpha plane can be quite a 
daunting task because, in many cases, several perfectly matching 
candidates can be found, leading to disastrous results in terms of 
global motion parameters. Therefore, to improve the global 
motion estimation, a 16×16 luminance context around the 
considered contour points will be used because the shape context 
alone gives too many inconsistencies, leading to rather 
inaccurate motion parameters. 

After all the corresponding points have been found for the 
current and previous alpha planes, the global motion parameters 
are determined by finding linear least squares estimates of c1, c2, 
c3 and c4, as described in [3]. 

2.2 Global motion compensation concealment 

After the global motion parameters are known, the motion 
compensation itself is quite straightforward. The objective of this 
module is to take the correctly decoded (or partly concealed) 
alpha plane from the previous time instant and global motion 
compensate it to the current time instant, so that it can be used to 
conceal the corrupted parts of the current alpha plane. To do 
this, all the decoder has to do is consider all the points with 
coordinates (x,y) in the previous alpha plane and compute their 
new coordinates (x’,y’) in the current time instant where the 
concealment is to be applied, by using Equation (1). To make the 
motion compensation more efficient, only the points with 
coordinates (x,y) that correspond to opaque shapels in the 
previous alpha plane have to be considered. Of course, motion 
compensation can be applied to both shape and texture data. 

After the previous alpha plane has been motion 
compensated, the concealment itself, which is simply a cut and 
paste operation, can start. In the corrupted alpha plane, all the 
corrupted shape blocks are replaced with the corresponding 
alpha plane blocks from the motion compensated previous alpha 
plane. The same can be done for the texture data. 

To better understand this procedure, Figure 3 should be 
considered. In Figure 3 (a), the corrupted alpha plane is shown. 
In Figure 3 (b), the previous global motion compensated alpha 
plane is shown, where the shaded areas correspond to the 
corrupted alpha blocks in the current corrupted alpha plane. By 
simply copying these shaded blocks to the corrupted alpha plane, 
Figure 3 (c) is obtained, where the concealed blocks are shaded. 

 
(a) 

 
(b) 

 
(c) 

Figure 3 – Replacement of corrupted alpha plane blocks: (a) 
Corrupted alpha plane; (b) Previous global motion 

compensated alpha plane; (c) Concealed alpha plane 



2.3 Local motion refinement 

As illustrated in Figure 2, for alpha planes that have significant 
local motion, the global motion compensation concealment 
process described in Section 2.2 is not enough to produce good 
results. Therefore, to deal with the areas that have local motion, 
a refinement is necessary. However, before trying to refine the 
proposed concealment method, it is important to distinguish two 
types of concealed blocks: blocks that have at least one correctly 
decoded neighboring (shape) block and blocks that only have 
neighboring blocks that have been (shape) concealed themselves. 
Since the former have much more reliable neighboring shape 
data (because it has been correctly decoded), the refinement 
should start with those. The local motion concealment 
refinement is applied to the latter blocks only afterwards. Thus, 
the refinement procedure consists of two consecutive steps 
described in the next two sections. 

2.3.1 Local motion refinement of shape blocks with correct 
neighbors 

To refine the concealment of blocks that have at least one 
correctly decoded neighboring block, the shape blocks in the 
concealed alpha plane are scanned from top to bottom, left to 
right. For each concealed shape block that has at least one 
correctly decoded neighboring block, the decoder has to 
determine if it has been acceptably concealed with the global 
motion compensation alone. This is done by inspecting the 
correctly decoded neighboring shape blocks and comparing them 
with the shape blocks that would have been obtained if global 
motion compensation concealment had also been applied to 
them. If the number of different shapels does not exceed 90 for 
all the correctly decoded neighboring shape blocks and 30 for 
any individual block, the shape block at hand is considered to 
have been adequately concealed and no further processing is 
needed for it. Otherwise, local motion refinement will be 
applied. For this, a motion vector is determined for each one of 
the non-transparent correctly decoded shape blocks surrounding 
the shape block in question. This is done by applying a typical 
block-matching motion estimation algorithm to the current 
luminance plane and the previous luminance plane. Then, local 
motion compensated concealment is tried for the shape block at 
hand with the determined motion vectors (i.e., replacing the 
corrupted shape block with the shape block from the previous 
alpha plane indicated by the determined motion vector). In 
addition to the various individual motion vectors, the average 
motion vector is also tried. If some of the neighboring shape 
blocks were not correctly decoded but have already been 
(concealed and) local motion refined and, therefore, already have 
local motion vectors associated to them, they are also included in 
the computation of the average motion vector. From the tested 
motion vectors, the one that will be used to perform the final 
local concealment is the one that minimizes a shape border 
continuity metric (SCM) for the concealed shape block. This 
metric is defined as: 
 ∑ −=

i
ii ssSCM ˆ  (2) 

where si corresponds to the shapels in the four borders of the 
concealed shape block being refined and ŝi corresponds to the 
shapels across the border from si. To compute the SCM, only the 
neighboring blocks that have either been correctly decoded or 
already undergone local refinement are taken into account. 

2.3.2 Local motion refinement of shape blocks with no 
uncorrupted neighbors 

To refine the concealment of the shape blocks that do not have 
any correctly decoded neighboring blocks, the shape blocks in 

the concealed alpha plane are scanned from top to bottom, left to 
right. For each concealed shape block that does not have any 
correctly decoded neighboring block, the decoder has to 
determine if any of the neighboring shape blocks have been 
locally refined. If not, nothing is done at this time for this shape 
block. If, on the other hand, some of the neighboring shape 
blocks have already been locally refined, their previously 
determined (i.e., in the previous section) motion vectors should 
be considered and used to perform local motion compensated 
concealment for the shape block at hand. As in Section 2.3.1, the 
average motion vector is also tried. To choose which motion 
vector will be used to perform the final concealment, the metric 
in Equation (2) will also be used. The same motion vector can 
also be used to refine the concealed texture data. 

In order to guarantee that all the necessary shape blocks are 
refined, the procedure described above has to be performed 
again from bottom to top, right to left. 

3. PERFORMANCE EVALUATION 

In order to evaluate the proposed motion-based shape 
concealment technique, the Akiyo, Bream and Stefan video 
objects have been encoded according to the MPEG-4 Core 
Visual Object Type. In terms of MPEG-4 video error resilience 
tools, resynchronization markers and data partitioning with 
reversible variable length codes were used. Additionally, since it 
was important (for the estimation of global motion parameters) 
to avoid that the decoded texture quality degrade too much, a 
periodic intra refreshment scheme was used at the encoder. As 
for the shape data, it was intra coded at each time instant. 

Here, instead of adding errors directly to the bitstreams, the 
decoder simply ignored the video packets randomly with a given 
packet loss rate (following a uniform distribution which 
produces bursts of corrupted shape blocks), thus allowing to 
evaluate the performance of the concealment technique 
independently of the decoder error detection capabilities. For 
each one of the studied loss rates, each video object has been 
decoded 50 times (i.e., corresponding to 50 different error 
patterns or runs), while applying the proposed motion-based 
shape error concealment technique to the corrupted alpha planes. 

To evaluate the shape quality, the Dn metric used by MPEG 
is adopted, which is defined as the number of different shapels 
between the decoded and original alpha planes divided by the 
total number of opaque shapels in the original alpha plane. 
Additionally, since the proposed technique can also be applied 
to the texture of the video object, whose decoded texture quality 
is here very important for the estimation of the global motion 
parameters, numerical texture quality results will also be 
presented using the PSNR metric. However, since arbitrarily 
shaped video objects are used, the PSNR metric is only 
computed over the pixels that belong to both the decoded VOP 
being evaluated and the original VOP. 

Due to space limitation, results are only shown here for the 
CIF version of the Stefan video object; the lowest acceptable 
frame rate for this sequence (i.e., 15 fps) was used because it 
corresponds to the most critical situation in terms of temporal 
error concealment. At this frame rate, an acceptable texture 
quality can be obtained by encoding the sequence at 128 kbps. 
As for the video packet size, this was chosen to be 1060 bits, 
which corresponds to eight video packets per VOP. With these 
parameters, an average error-free decoded texture quality of 
30.46 dB is obtained. The obtained Dn for error-free conditions 
is obviously 0.00% because MPEG-4 shape coding is lossless. 

In Table 1, Dnlow and Dnhigh correspond, respectively, to the 
average Dn values associated with the best and the worst runs in 
terms of shape quality. As for Dnavg, it corresponds to the mean 



of the average Dn values associated with the 50 different runs for 
each test case. In Table 2, PSNRlow, PSNRavg and PSNRhigh have 
equivalent definitions. 

Table 1 – Dn values for the Stefan video object 
Video packet 

loss rate 
Dnlow [%] Dnavg [%] Dnhigh [%] 

1% 0.09 0.32 0.57 
5% 0.92 1.67 2.55 

10% 2.25 3.42 5.09 
20% 6.17 7.45 9.79 

Table 2 – PSNR values for the Stefan video object 
Video packet 

loss rate 
PSNRlow [dB] PSNRavg [dB] PSNRhigh [dB]

1% 27.77 28.99 29.89 
5% 23.82 25.05 26.20 

10% 21.35 22.50 23.66 
20% 18.94 19.59 20.40 

As expected, Table 1 shows that the Dn values increase 
gradually as the packet loss rate increases, going from values 
well below 1% to values above 5%. Notice that Dn values below 
1% correspond to hardly noticeable artifacts, while for values 
above 5% the artifacts start to become quite visible. As for the 
PSNR values in Table 2, they gradually decay as the packet loss 
rate increases, which was also expected. 

In order to illustrate the results in Table 1 and Table 2, the 
shape and texture of a given decoded VOP (VOP 3 in the 
original 300 VOP sequence) is used. In Figure 5, three different 
corrupted versions of the alpha plane in Figure 4 (a) and the 
texture in Figure 4 (b) are shown, in addition to the 
corresponding concealed alpha planes and textures. These three 
versions correspond to three of the 50 different error patterns for 
a video packet loss rate of 20% (the worst tested). As can be 
seen in Figure 5, although some artifacts are visible, the obtained 
results are visually quite acceptable taking into account the 
complexity of the shape and the amount of errors. The Dn values 
for the concealed alpha planes shown are: 11.50% for error 
pattern 1, 8.86% for error pattern 2 and 7.58% for error pattern 
3. As for the corresponding PSNR values, they are 24.41 dB for 
pattern 1, 26.91 dB for pattern 2 and 21.91 dB for pattern 3. The 
uncorrupted texture has a PSNR value of 30.31 dB. 

4. FINAL REMARKS 

In this paper, a temporal motion-based technique was proposed 
to conceal shape errors in binary alpha planes or in the binary 
support of gray scale shapes for object-based video coding 
systems, such as those based on the MPEG-4 standard. Results 
have been presented showing the ability of this technique to 
recover lost shape data with rather small distortion, even for 
cases where local motion exists and the global motion model 
alone is not able to perfectly describe the shape motion. 

Finally, it is important to emphasize the relevance of shape 
concealment techniques, not only to achieve an acceptable shape 
quality, but also because the decoded texture quality obtained is 
highly dependent on the quality of the shape data (i.e., the 
texture data can only be correctly decoded if the shape data is 
correct). Therefore, for object-based video applications to be 
actually deployed in error-prone environments, robust shape 
error concealment techniques will have to be available. 

 
(a) 

 
(b) 

Figure 4 – Stefan video object: (a) alpha plane; (b) texture 
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(c) 

Figure 5 – Corrupted and respective concealed alpha planes 
and textures for the Stefan video object with a video packet loss 

rate of 20% for: (a) error pattern 1; (b) error pattern 2; (c) 
error pattern 3 
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