
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001 765

An Overview of the MPEG-7 Description Definition Language (DDL)
Jane Hunter

Abstract—This paper presents an overview of the MPEG-7
Description Definition Language (DDL). The DDL provides the
syntactic rules for creating, combining, extending and refining
MPEG-7 Descriptors (Ds) and Description Schemes (DSs). In the
interests of interoperability, the W3C’s XML Schema language,
with the addition of certain MPEG-7-specific extensions, has been
chosen as the DDL. This paper describes the background to this
decision and using examples, provides an overview of the core
XML schema features used within MPEG-7 and the extensions
made in order to satisfy the MPEG-7 DDL requirements.

Index Terms—DDL, MPEG-7, parser, schema, XML.

I. INTRODUCTION

T HE Description Definition Language (DDL) forms a core
part of the MPEG-7 standard. It provides the solid descrip-

tive foundation by which users can create their own Description
Schemes (DSs) and Descriptors (Ds). The DDL defines the syn-
tactic rules to express, combine, extend and refine DSs and Ds.
According to the definition in the MPEG-7 Requirements Doc-
ument [1] the DDL is

“…a language that allows the creation of new Descrip-
tion Schemes and, possibly, Descriptors. It also allows
the extension and modification of existing Description
Schemes.”

The DDL is not a modeling language, such as Unified Modeling
Language (UML), but a schema language to represent the results
of modeling audiovisual data, (i.e., DSs and Ds) as a set of syn-
tactic, structural, and value constraints to which valid MPEG-7
descriptors, description schemes, and descriptions must con-
form.

According to the MPEG-7 DDL requirements [1], the DDL
must be capable of expressing structural, inheritance, spatial,
temporal, and conceptual relationships between the elements
within a DS and between DSs. It must provide a rich model for
links and references between one or more descriptions and the
data that it describes. It must be platform and application inde-
pendent, machine-readable, and preferably human-readable. It
must be capable of specifying descriptor datatypes, both prim-
itive (integer, text, date, time) and composite (histograms, enu-
merated types).

In addition, a DDL Parser is required which is capable of
validating the syntax of MPEG-7 DSs (content and structure)
and Descriptor datatypes. Given an MPEG-7 description, the
parser must also be able to check its conformance to the rules
expressed in the corresponding MPEG-7 DSs and Ds.

At the 51st MPEG Meeting in Noordwijkerhout in March
2000, it was decided to adopt the W3C’s XML Schema Lan-

Manuscript received September 2000; revised March 25, 2001.
The author is with the DSTC Pty Ltd., The University of Queensland, Qld.

4072, Australia (e-mail: jane@dstc.edu.au).
Publisher Item Identifier S 1051-8215(01)04995-3.

guage as the MPEG-7 DDL. However, because XML Schema
language has not been designed specifically for audiovisual con-
tent, certain extensions are necessary in order to satisfy all of
the MPEG-7 DDL requirements. Hence, the DDL consists of
the following components which are described in Sections III,
IV, and V:

1) XML Schema structural components;
2) XML Schema datatypes;
3) MPEG-7-specific extensions.

In the remainder of this paper, we will describe the events which
have led to the current DDL and its key components and fea-
tures. Complete specifications can be found in the MPEG-7
DDL Committee Draft [2] and the W3C XML Schema Candi-
date Recommendations [3]–[5].

II. HISTORICAL BACKGROUND

In response to the MPEG-7 Call for Proposals in October
1998, the MPEG-7 DDL evaluation team compared and eval-
uated ten DDL proposals at the MPEG-7 AHG Test and Eval-
uation Meeting in 1998. A summary report [6] was produced
which concluded that XML [7] should be used as the syntax for
the MPEG-7 DDL. There was also a consensus that the MPEG-7
DDL must support the validation of structural, relational and
data typing constraints as well as the expression of semantics
through the addition of richer constraints such as inheritance.

Although none of the proposals could satisfy all of the re-
quirements, it was decided to base the DDL on DSTC’s pro-
posal, P547 [8], with the integration of ideas and components
from other proposals and contributors. In addition, the strategy
was to continue monitoring and liaising with related efforts in
the W3C community, in particular the XML Schema [9], XLink
[10], and XPath [11] Working Groups.

In May 1999, the XML Schema WG produced the first ver-
sion of a 2-part working draft of the XML Schema language:
XML Schema Part 1: Structures [4] and XML Schema Part
2: Datatypes [5]. Preliminary encoding of the Multimedia DSs
[12], [13] using XML Schema language demonstrated its suit-
ability as a basis for the DDL. However reservations were raised
at the 48th MPEG Meeting in Vancouver in July 1999 con-
cerning MPEG-7’s dependency on the output and time schedule
of W3C XML Schema WG. As a result, the decision was made
to develop a proprietary MPEG-7-specific language in parallel
with the XML Schema language developments within W3C. A
new grammar based on DSTC’s proposal but using MPEG-7
terminology (DeSs and Ds) and with modifications to ensure
simple mapping to XML Schema, was developed. Based on
this proprietary grammar, a Backus Naur Form (BNF), an XML
DTD, nonvalidating parsers, and validation specifications were
also developed.

1051–8215/01$10.00 © 2001 IEEE

766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001

However, in the interests of interoperability, it was decided at
the 51st MPEG Meeting in Noordwijkerhout in March 2000 to
adopt XML Schema Language, with additional MPEG-7-spe-
cific extensions, as the DDL. This decision was made in recog-
nition of the growing stability and expected widespread adop-
tion of XML Schema, the availability of open source parsers and
the release of Last Call for Review Working Drafts by the W3C.

A detailed evaluation of XML Schema revealed that al-
though XML Schema satisfies the majority of the MPEG-7
DDL requirements, there are some existing features which are
problematic and other features, required by MPEG-7, which
are not satisfied. A list of problem issues and feature requests
was submitted to the XML Schema WG in response to the Last
Call for Review [14]. Certain high-priority features, which are
not expected to be implemented within XML Schema, have
been implemented as MPEG-7-specific extensions. Validation
of these extensions will be through extensions to existing
XML Schema parsers implemented during the development of
MPEG-7 parsers.

Hence, the DDL consists of the following logical components
which are described briefly in the next three sections:

1) XML Schema structural components;
2) XML Schema datatypes;
3) MPEG-7-specific extensions.

The complete detailed specifications of the DDL can be found
in the MPEG-7 DDL Committee Draft [2] and the W3C XML
Schema Candidate Recommendations [3]–[5].

III. XML S CHEMA STRUCTURAL COMPONENTS

The purpose of this section is to describe the language
constructs provided by XML Schema which can be used to
constrain the content structure and attributes associated with
MPEG-7 Description Schemes and Descriptors.

XML Schema consists of three categories of schema compo-
nents. The primary components are:

1) namespaces and the xchema wrapper around the defini-
tions and declarations;

2) element declarations;
3) attribute declarations;
4) type definitions: simple; complex; derived, anonymous.

The secondary components are:

1) attribute group definitions;
2) model group definitions;
3) identity-constraint definitions;
4) notation declarations.

The third group are the “helper” components which contribute
to the other components and cannot stand alone:

1) annotations;
2) model groups;
3) particles;
4) wildcards.

In this paper, we only describe those features of most im-
portance to MPEG-7: the primary components and group
definitions. Details of other components not described here can
be found in the XML Schema Candidate Recommendations
[3]–[5].

A. Namespaces and the Schema Wrapper

XML namespaces [15] provide a simple method for referring
to Ds and DSs from multiple different schemas so they can be
used in descriptions or re-used to create new schemas. Names-
pace qualifiers associate elements and attributes with a partic-
ular namespace identified by a URI reference. Every schema
definition must begin with a preamble in order to identify the
current namespace. This also enables the generation of descrip-
tions based on schemas which combine schema components
from multiple different namespaces. The mandatory preamble
consists of an XML element “schema” which includes the fol-
lowing attributes:

1) xmlns: a URI to the XML Schema namespace;
2) targetNamespace: the URI by which the current schema

is to be identified;
3) xmlns:mpeg7: a URI to the MPEG7 DDL to be used for

validation;
4) xmlns: References to other imported schemas and ab-

breviations for referring to definitions in these external
schemas.

<schema

xmlns =“http://www.w3.org/2000/10/XMLSchema”

xmlns:mpeg7 =

“http://www.mpeg7.org/2001/MPEG-7 Schema”

targetNamespace =

“http://www.mpeg7.org/2001/MPEG-7 Schema”>

.

.

</schema >

B. Element Declarations

Element declarations enable the appearance in document in-
stances of elements with specific names and types. An element
declaration specifies a type definition for a schema element
either explicitly or by reference, and may provide occurrence
(minOccursandmaxOccurs) and default information (through
the default attribute). For example, the element declaration
below associates the nameCountry with an existing type
definition, countryCode, specifies that the default value for
the Country element is “en” (England) and that theCountry
element can occur zero or more times.

<element name =“Country” type =“countryCode”

default =“en” minOccurs =“0”

maxOccurs =“unbounded” =>

The default values for minOccurs and maxOccurs are:

minOccurs ;
maxOccurs

• unbounded, if the maxOccurs [attribute] equals un-
bounded;

• otherwise the number corresponding to the normal-
ized value of the maxOccurs [attribute], if present,

• otherwise 1.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001 767

Sometimes it is preferable to reference an existing element
rather than declare a new element.

<element ref =“Country” minOccurs =“1” =>

This declaration references an existing element (Country)
that was declared elsewhere in the schema. In general, the
value of the ref attribute must reference a global element, i.e.,
one that has been declared underschemarather than as part of
a complex type definition. The consequence of this declaration
is that an element calledCountrymust appear at least once in
an instance document, and its content must be consistent with
that element’s type, thecountryCode.

C. Attribute Declarations

Attribute declarations enable the appearance in document
instances of attributes with specific names and types by
associating an attribute name with a simple datatype. Within
an attribute declaration, the use attribute specifies presence
required optional �xed default prohibited ; and the value

attribute indicates a fixed or default value. The default value of
use is optional. The declaration which follows indicates that
the appearance of alang attribute is optional and its default
value is “en-uk”:

<attribute name =“lang” type =“language”

use=“default” value =“en-uk” = >

<complexType name =“AnnotationType” >

<simpleContent >

<extension base =“string” >

<attribute ref =“xml:lang” =>

<=extension >

<simpleContent >

<complexType >

Following is a valid instance of an element of the above type:

<Annotation lang =“en-us” >

Shower scene

<Annotation >

D. Type Definitions

In XML Schema there is a fundamental distinction between
type definitions (which create new types) and declarations
which enable the appearance in document instances of elements
and attributes with specific names and types. Type definitions
define internal schema components which can be used in other
schema components such as element or attribute declarations
or other type definitions. XML Schema providessimpleand
complextype definitions.

1) Simple Type Definitions:Simple types cannot have ele-
ment content and cannot carry attributes. Both elements and at-
tributes can be declared to have simple types. XML Schema pro-
vides a large number of simple types through a set of built-in
primitive types and a set of built-in derived types (derived from
the primitive types) [5]. These built-in datatypes are described

in Section IV of this paper. In addition to the built-in simple
types, new simple types can be derived by the application of re-
strictions such as theenumerationfacet on a string or themin-
Inclusiveand maxInclusivefacets on an integer, as shown in
the following examples. The facets which are applicable to each
datatype are listed in [5, Appendix C]:

<simpleType name =“directionType” >

<restriction base =“string” >

<enumeration value =“uni-directional” = >

<enumeration value =“bi-directional” = >

<restriction >

<simpleType >

<simpleType name =“unsigned6” >

<restriction base =“nonNegativeInteger” >

<minInclusive value =“0” = >

<maxInclusive value =“63” = >

<restriction >

<simpleType >

In addition to atomic (indivisible) simple types, XML
Schema also provides two aggregate simple types:list types
and union types. List types are composed of sequences of
atomic types. Union types enable element or attribute values
to be instances of a type drawn from the union of multiple
atomic and list types. These two aggregate types are described
in Sections IV-D and IV-E.

2) Complex Type Definitions:Unlike simple types, complex
types allow children elements in their content and may carry
attributes. Complex type definitions provide:

a) constraints on the appearance and content of attributes;
b) constraints on children elements and the content model of

the type;
c) derivation of complex types from other simple or complex

types through extension or restriction.
New complex types are defined using thecomplexTypeelement
and such definitions typically contain a set of element decla-
rations, element references, and attribute declarations. For ex-
ample, the complex type ‘”Organization,” which is defined as
follows, contains three element declarations and one attribute
declaration

<complexType name =“OrganizationType” >

<sequence >

<element name =“OrgName” type =“string” = >

<element name =“ContactPerson”

type =“IndividualType”

minOccurs =“1”

maxOccurs =“unbounded” = >

<element name =“Address” type =“PlaceType”

minOccurs =“1” maxOccurs =“1” = >

<sequence >

<attribute name =“id” type =“ID”

use=“required” = >

<complexType >

<element name =“ProdComp”

type =“OrganizationType” = >

768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001

The consequence of this definition is that anyProdCompel-
ements appearing in an MPEG-7 description must consist of an
OrgName element, one or moreContactPersonelements, and
oneAddresselement. The first of these elements will contain
a string, the second will contain the complexTypeIndividual-
Type, and the third will contain the complexTypePlaceType.
Any element whose type is declared to beOrganizationmust
also appear with an attribute calledid, which must contain an
ID (unique identifier). Below is an example of a valid instance

<ProdComp id =“ORG754”>

<OrgName>DSTC Pty Ltd <OrgName>

<ContactPerson >Liz Armstrong <ContactPerson >

<Address >University of Qld <Address >

<ProdComp>

It is also possible to constrain the content model of a com-
plexType to the following:

1) empty:no child elements only attributes;
2) mixed:character data appears between elements and their

children. Themixedattribute must be set to “true;”
3) complexContent:the default content type which consists

of elements and attributes;
4) simpleContent:use when deriving a complexType from

a simpleType. This indicates that the new type contains
only character data and no elements.

Following is an example of theemptycontent model and a valid
instance of this example:

<element name =“Price” >

<complexType >

<attribute name =“currency”

type =“currencyCode” = >

<attribute name =“value” type =“decimal” = >

<complexType >

<element >

<Price currency =“EU” value =“423.46” = >:

Following is an example of themixedcontent model and a
valid instance of the example:

<element name =“Introduction” >

<complexType mixed =“true” >

<sequence >

<element name =“Name” type =“string” = >

<sequence >

<complexType >

<element >

<Introduction >Dear Ms. <Name>Hetty

Wilson <Name>;<Introduction >

3) Derived Types:It is possible to derive new complexTypes
by extension or restriction of simple or complex base-type def-
initions. A complex type extends another by having additional
content model particles at the end of the other definition’s con-
tent model, or by having additional attribute declarations, or

both. A new complexType can be derived by extending a sim-
pleType through the addition of attributes. To indicate that the
content model of the new type contains only character data and
no elements, thesimpleContentelement is used. In the following
example, thesourceandtargetattributes are added to the simple
string base type to define theRelationType:

<complexType name =“RelationType” >

<simpleContent >

<extension base =“string” >

<attribute name =“source”

type =“IDREF” use =“optional” = >

<attribute name =“target”

type =“IDREF” use =“optional” = >

<extension >

<simpleContent >

<complexType >

<element name =“Relation”

type =“RelationType” = >

<Relation source =“edge1” target =“dge2” >

morph

<Relation >

A new complexType may also be derived by extending an
existing complexType. In the example below, thePersontype is
extended through the addition of a newrole element, to create
the Creator type. ThecomplexContentelement is required to
indicate that we intend to restrict or extend the content model
of a complex type and that the new type contains only elements
and no character data

<complexType name =“Creator” >

<complexContent >

<extension base =“PersonType” >

<sequence >

<element name =“role”

type =“ControlledTermType” = >

<sequence >

<extension >

<complexContent >

<complexType >

A type definition whose declarations or facets are in a
one-to-one relation with those of another specified type defini-
tion, with each in turn restricting the possibilities of the one it
corresponds to, is said to be a restriction. The specific restric-
tions might include narrowed ranges or reduced alternatives.
Members of a type, A, whose definition is a restriction of the
definition of another type, B, are always members of type B as
well.

In the example below theSimpleNametype is derived through
restriction of thePersonNametype. The restriction is on the oc-
currence constraints of theTitle andForenameelements which
are reduced from unbounded to 1

<complexType name =“PersonNameType” >

<sequence >

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001 769

<element name =“Title” minOccurs =“0” = >

<element name =“Forename” minOccurs =“0”

maxOccurs =“unbounded” = >

<sequence >

<complexType >

<complexType name =“SimpleNameType” >

<complexContent >

<restriction base =“PersonNameType” >

<sequence >

<element name =“Title” minOccurs =“1”

maxOccurs =“1” = >

<element name =“Forename” minOccurs =“1”

maxOccurs =“1” = >

<sequence >

<restriction >

<complexContent >

<complexType >

<PersonName>

<Title >Prof. <Title >

<Forename >Simon<Forename >

<Forename >Daniel <Forename >

<Forename >Kaplan <ForeName>

<PersonName>

<SimpleName >

<Title >Prof. <Title >

<Forename >Kaplan <Forename >

<SimpleName >

4) Anonymous Type Definitions:Schemas can be con-
structed by defining named types and then declaring elements
that reference the types using theelement name type

construction. This style of schema construction is straight-
forward but it can become unwieldy if you define many types
that are referenced only once and contain very few constraints.
In these cases, a type can be more succinctly defined as an
anonymous type which saves the overhead of having to be
named and explicitly referenced

<element name =“Affiliation” >

<complexType >

<choice >

<element name =“Organization”

type =“OrganizationType” = >

<element name =“PersonGroup”

type =“PersonGroupType” = >

<choice >

<complexType >

<element >

5) Group Definitions: The attributeGroupand group ele-
ments provide mechanisms for creating and naming groups of
attributes and groups of elements respectively. Such groups can
then be incorporated by reference into complexType definitions

<attributeGroup name =“id href Group” >

<attribute name =“id” type =“ID” = >

<attribute name =“href”

type =“uriReference” = >

<attributeGroup >

<complexType name =“Classification” >

<sequence >

<element ref =“Genre” = >

<sequence >

<attributeGroup ref =“id href Group” = >

<complexType >

Three compositors are also provided to construct unnamed
groups of elements.

Case 1)Sequence: constrains the elements in the group to
appear in the same order in which they are declared;

Case 2)Choice: only one of the elements in the group may
appear in an instance;

Case 3)All: all of the elements in the group may appear once
or not at all and in any order.

In the example below, the ContactGroup is defined as a choice
between two elements,OrganizationandPerson. ThePublish-
erTypeis then defined as a sequence ofContactGroupandAd-
dressand with an id attribute

<group name =“ContactGroup” >

<choice >

<element ref =“Organization” = >

<element ref =“Person” = >

<choice >

<group >

<complexType name =“PublisherType” >

<sequence >

<group ref name =“ContactGroup” = >

<element ref =“Address” = >

<sequence >

<attribute name =“id” type =“ID”

use=“optional” = >

<complexType >

Example of a valid instance:

<Publisher id =“ORG123”>

<Organization >DSTC Pty Ltd <Organization = >

<Address >Uni. Of Qld <Address >

<Publisher >

IV. XML S CHEMA DATATYPES

This section describes the built-in primitive datatypes,
the built-in derived datatypes and mechanisms for defining
customized derived datatypes such as facets, lists and union
datatypes. These facilities can be used to constrain the possible
values of MPEG-7 descriptors within instantiated descriptions.

A. Built-In Primitive Datatypes

The following built-in primitive datatypes are provided
within XML Schema:Datatypes:

1) string;

770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001

2) boolean;
3) float;
4) double;
5) decimal;
6) timeDuration [ISO 8601];
7) recurringDuration;
8) binary;
9) uriReference;

10) ID;
11) IDREF;
12) ENTITY;
13) QName.

B. Built-In Derived Datatypes

The following built-in datatypes, which have been derived
from the primitive types listed above, are also provided:

1) CDATA;
2) token;
3) language [RFC 1766];
4) IDREFS;
5) ENTITIES;
6) NMTOKEN, NMTOKENS;
7) Name, NCName;
8) NOTATION;
9) integer, nonPositiveInteger, negativeInteger,

nonNegativeInteger, positiveInteger;
10) long, unsignedLong;
11) int, unsignedInt;
12) short, unsignedShort;
13) byte, unsignedByte;
14) timeInstant, time, timePeriod;
15) date, month, year, century;
16) recurringDate, recurringDay.

C. Facets

A derived datatype is defined by applying constraining facets
to a primitive datatype or another derived datatype. Table I lists
the facets which are provided to generate customized datatypes.

The following example illustrates the application of themin-
InclusiveandmaxInclusivefacets to afloat datatype to restrict
elements of typeheightto between 0.0 and 120.0:

<simpleType name =“height” base =“float” >

<minInclusive value =“0.0” = >

<maxInclusive value =“120.0” >

<simpleType >

The example below restricts elements of typePhoneNumto
strings of three digits followed by a dash followed by four digits:

<simpleType name =“PhoneNum” base =“string” >

<pattern value = “ n df3g- n df4g” = >

<simpleType >

TABLE I
FACETS PROVIDED TO GENERATE CUSTOMIZED DATA TYPES

D. The List Datatype

List types are composed of sequences of atomic types, sepa-
rated by whitespace. XML Schema has three built-in list types,
NMTOKENS, IDREFS, and ENTITIES. In addition, you can
create new list types by derivation from existing atomic types.
You cannot create list types from existing list types or from
complex types but you can apply facets (length, minLength,
maxLengthandenumeration) to derive new list types.

Examples of list-type definitions and a valid instance

<simpleType name =“integerVector” >

<list itemType =“integer” = >

<simpleType >

<simpleType name =“integerVector4” >

<restriction base“integerVector” >

<length value =“4” = >

<restriction >

<simpleType >

<integerVector4 >5 8 11 2<integerVector4 >

E. The Union Datatype

Union types enable element or attribute values to be one or
more instances of one type drawn from the union of multiple
atomic and list types. In the example below, the element Un-
signed6OrDirection can have a value which is of either type Un-
signed6 or Direction, because it is defined as the union of these
two types

<element name =“Unsigned6OrDirection” >

<simpleType >

<union memberTypes =“unsigned6

directionType” = >

<simpleType >

<element >

The examples below are both valid instances of this element:

<Unsigned6OrDirection >

45

<Unsigned6OrDirection >

<Unsigned6OrDirection >

unidirectional

<Unsigned6OrDirection >

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001 771

V. MPEG-7-SPECIFICEXTENSIONS

It has been necessary to add the following features to XML
Schema in order to satisfy the MPEG-7 DDL requirements:

1) array and matrix datatypes;
2) typed references;
3) built-in derived datatypes such as enumerated datatypes

for MimeType, CountryCode, RegionCode, Character-
SetCode, and CurrencyCode and a set of additional time
datatypes.

A. Array and Matrix Datatypes

MPEG-7 requires a DDL mechanism to restrict the size of ar-
rays and matrices to either a pre-defined facet value in a schema
definition or to an attribute at time of instantiation. Using thelist
datatype, two methods are provided for specifying sizes of (1-D)
arrays and multi-dimensional matrices. A newmpeg7:dimen-
sionfacet, which is a list of positive integers, is provided to en-
able the specification of the dimensions of a fixed-size array or
matrix. To ensure XML Schema, parsers ignore MPEG-7-spe-
cific extensions and MPEG-7 parsers validate them, then the

annotation appinfo wrapper is required.
The following example illustrates the definition and instanti-

ation of an integer matrix with three rows and four columns:

<simpleType name =“IntMatrix2D” >

<list itemType =“integer” >

<annotation ><appinfo >

<mpeg7:dimension value =“unbounded

unbounded” = >

<appinfo ><annotation >

<list >

<simpleType >

<simpleType name =“IntMatrix3x4” >

<restriction base =“IntMatrix2D” >

<annotation ><appinfo >

<mpeg7:dimension value =“3 4” = >

<appinfo ><annotation >

<restriction >

<simpleType >

<element name =“IntMat3x4”

type =“IntMatrix3x4” = >

<IntMat3x4 >

5 8 9 4

7 6 1 2

1 3 5 8

<IntMat3x4 >

The specialmpeg7:dimattribute is also provided to support
parameterized array and matrix sizes. It specifies the dimensions
to be applied to a list type at the time of instantiation and is
defined in the mpeg7 namespace as a list of positive integers

<simpleType name="dim" >

<list itemType =“integer” = >

<simpleType >

<complexType name =“NDimIntegerArray” >

<simpleContent >

<extension base =“listOfInteger” >

<attribute ref =“mpeg7:dim” = >

<extension >

<simpleContent >

<complexType >

<element name“IntegerMatrix”

type =“NDimIntegerArray” = >

In the following example, a matrix with 2 rows and 4 columns
is specified at the time of instantiation usingmpeg7:dim:

<IntegerMatrix mpeg7:dim=“2 4” >

1 2 3 4

5 6 7 8

<IntegerMatrix >

B. Typed References

Thempeg7:refTypefacet provides a way to check the type of
a referenced element. The type of the referenced element must
be of the type specified by the value ofrefType, or a type derived
from that type. In the example that follows, the value of element
SegmentRef must be an IDREF to a SegmentType element:

<simpleType name =“IdRefSegment” >

<restriction base =“IDREF” >

<annotation ><appinfo >

<mpeg7:refTypvalue =“mpeg7:SegmentType” = >

<appinfo ><annotation >

<restriction >

<simpleType >

<element name =“SegmentRef”

type =“mpeg7:IdRefSegment” = >

C. Built-In Derived Datatypes

In addition to the built-in derived types provided by XML
Schema:Datatypes, the following built-in datatypes are also pro-
vided to explicitly satisfy the requirements of MPEG-7 imple-
mentors:

1) mimeType—IANA list of Mime Types [16], [17];
2) country Code—ISO3166-1:1997 [18];
3) region Code—ISO3166-2:1998;
4) currency Code—ISO4217:1995;
5) characterSetCode—IANA List of Character Sets [19].

The following MPEG-7-specific time datatypes are also cur-
rently under consideration for incorporation within the DDL:

1) basicTimePoint;
2) basicDuration.

VI. CURRENT STATUS

The DDL is currently at the final Committee Draft stage and
is expected to move to final Draft International Standard in July
2001. Issues which still require resolution include such prob-
lems as completion of an open source MPEG-7 parser, clarifica-
tion, and location of MPEG-7 datatypes, data inheritance mech-
anisms, and the identification and handling of unused XML
Schema features.

772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 6, JUNE 2001

Another perceived problem is the instability of XML Schema.
It is currently at the Candidate Recommendation stage, but is
expected to move to Proposed Recommendation in the first half
of 2001 and to a Recommendation later in 2001. The MPEG-7
DDL will reflect any changes to XML Schema as it progresses
from CR to PR and finally to R but these are expected to be
minimal. In addition, the MPEG-7 DDL group will continue to
work with and provide feedback to the XML Schema Working
Group to ensure that the MPEG communities’ needs are consid-
ered and met as far as possible.

Detailed descriptions of the other parts of the MPEG-7 stan-
dard can be found in [20].

REFERENCES

[1] MPEG Requirements Group, “55th MPEG Meeting,” MPEG-7 require-
ments Document V.13, Pisa, Italy, Doc. ISO/MPEG N3933, Jan. 2001.

[2] Text of ISO/IEC CD 15938-2 information technology—Multimedia
content description interface: Description definition language. (2000,
Oct.) 54th MPEG Meeting, La Baule, France. [Online]. Available:
http://www.cselt.it/mpeg/public/mpeg-7_ddl_cd. zip

[3] XML Schema Part 0: Primer, W3C Candidate Recommendation (2000,
Oct.). [Online]. Available: http://www.w3.org/TR/xmlschema-0/

[4] XML Schema Part 1: Structures, W3C Candidate Recommendation
(2000, Oct.). [Online]. Available: http://www.w3.org/TR/xmlschema-1/

[5] XML Schema Part 2: Datatypes, W3C Candidate Recommendation
(2000, Oct.). [Online]. Available: http://www.w3.org/TR/xmlschema-2/

[6] MPEG7 Requirements Group, “47th MPEG Meeting,” ISO/IEC
JTC1/SC29/WG11 N2730, Seoul, Korea, Mar. 1999.

[7] Extensible Markup Language (XML) 1.0, W3C Recommendation
(1998, Feb.). [Online]. Available: http://www.w3.org/TR/REC-xml

[8] J. Hunter, “A proposal for an MPEG-7 DDL,” presented at the P547,
MPEG-7 AHG Test and Evaluation Meeting, Lancaster, U.K., Feb.
1999.

[9] XML Schema Working Group (1998). [Online]. Available: http://www.
w3.org/XML/Group/Schemas.html

[10] XML Linking Language (XLink) W3C Proposed Recommendation
(2000, Dec.). [Online]. Available: http://www.w3.org/TR/xlink/

[11] XML Path Language (XPath) Version 1.0 W3C Recommendation (1999,
Nov.). [Online]. Available: http://www.w3.org/TR/xpath/

[12] “MPEG-7 multimedia description schemes XM (v6.0),” presented at the
55th MPEG Meeting, ISO/IEC JTC1/SC29/WG11 w3815, Pisa, Italy,
Jan. 2001.

[13] MPEG-7 Multimedia Description Scheme Group, “Study of MPEG-7
multimedia description schemes CD (v1.0),” 55th MPEG Meeting, Pisa,
Doc. ISO/IEC JTC1/SC29/WG11 w3816, Jan. 2001.

[14] MPEG-7 DDL Response to XML Schema Last Call for Review (2000,
May). [Online]. Available: http://archive.dstc.edu.au/mpeg7-ddl/is-
sues.html

[15] W3C Recommendation (1999). [Online]. Available: http://www.w3.org/
TR/REC-xml-names/

[16] IANA List of Mime Types (2001). [Online]. Available: ftp://ftp.isi.edu/
in-notes/iana/assignments/media-types/media-types

[17] Internet Draft (2000, May). [Online]. Available: http://www.ietf.org/in-
ternet-drafts/draft-murata-xml-04.txt

[18] ISO Country Codes ISO31661:1997 (1997). [Online]. Available:
http://www.din.de/gremien/nas/nabd/iso3166ma/codlstp1/en_listp1.html

[19] IANA List of Character Sets (2001). [Online]. Available: http://www.
iana.org/assignments/character-sets

[20] IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 685–772, June
2001.

