DIGITAL TELEVISION

Fernando Pereira
Instituto Superior Técnico
TV Digital: What is it Really?

All the information – video, audio, data - arrives to our houses as a discrete sequence of (pre-defined) symbols which together allow to resynthesize the original information with a minimum acceptable quality!
Analogue versus Digital

Source -> Emissor -> Transmission

Encoder

Decompression

Decoder

TV

With modulation !!!
Why Digital TV?

- More efficient usage of the spectrum
- More channels and services
- Interactivity
- Personalization
- Error robustness
- Audio and video quality control
- Easier processing
- Better relation with the computer world
- Easier multiplexing and encryption
- Possibility of information regeneration
Analogue versus Digital Reception …
Digital Television: Only More of the Same?
TV of the Future: How will it Look like?

- Set-top box + TV analogue
- Digital TV
- *PC Card*
- *Mobile device*
- Any type of digital receiver
The Digital Domestic Scenario
Television: How is it Useful?

- Information
- Entertainment
- Games
- Divulgation
- Education
- Shopping
- ...

Audiovisual Communications, Fernando Pereira
Digital TV: Content or Terminal?

New services

More channels

Games

Digital audio and video

E-Mail

More local content

Internet

Electronic commerce

VOD

Super Teletext

EPG

Users

More local content

Digital audio and video

New services

More channels
Which Arguments Convince the Users?

- Satisfaction of important needs / added value / functionalities
- Interoperability at the application level – *users don’t care much about the specific technical solution*
- Quality and reliability
- Facility of usage
- Low cost of usage and equipment
- Variety and quality of content
The digital representation of information facilitates the explosion of interactive capabilities – user capability to select or change something, thus personalizing the television experience - associated to television and thus the capability of the users to:

- Access to thematic information
- Access to complementary information
- Control of the visualization sequence
- Select the visualization angle
- Express opinions, voting
- Use various services, e.g. tele-shopping, tele-banking
Winky Dink and You (1953-57, CBS, USA)
Types of Interactivity

- **Low Interactivity** – Zapping, audio control
- **Medium Interactivity** – Defines program but does not change program, e.g. VOD, teletext
- **High Interactivity** – Changes the program, e.g. program personalization, definition of end, mix with Internet
Television: How is Changing?

- **Analogue** → **Digital**
- **Broadcast** → **Monocast**
- **Fixed schedules** → Programs on demand, boxes
- **Monthly subscription** → Pay per view
- **Passivity** → Interactivity
- **Zappers** → Personalization
- **Teletext** → World Wide Web
Main Digital TV Systems

After the satellite and the cable, the possibility to release bandwidth has brought digital TV also to the terrestrial systems … and more …

The main digital TV systems are:

- **Digital Video Broadcasting (DVB)** – Driven by Europe
- **Advanced Television Systems Committee (ATSC)** – Driven by USA
- **Integrated Services Digital Broadcasting (ISDB)** – Driven by Japan (large similarities with DVB)
- **Audio Video coding Standard (AVS)** – Driven by China
- **Sistema Brasileiro de TV Digital Terrestre (SBTVD)** – Driven by Brazil (large similarities with ISDB)
What is DVB?

- Consortium with 220 members from 30 countries (at the beginning mainly European), formed in September 1993:
 - Content producers
 - Equipment manufacturers
 - Telecom operators
 - Regulation organizations

with the objective to define standards for digital television broadcasting over several transmission channels.

- Joint Technical Committee of ETSI / CENELEC / EBU
DVB: Initial Objectives

- High quality digital video delivery (up to HDTV)
- Delivery with good quality of TV programs using narrow bandwidth channels and increase the number of programs in current channels
- Reception in pocket terminals equipped with small reception antennas (portable reception)
- Mobile reception with good quality of TV programs
- Possibility of easy transmission over various telecom networks and integration with the PC world
From SDTV to HDTV..
The New DVB Vision: Combining Worlds …

DVB’s vision is to build a content environment that combines the stability and interoperability of the world of broadcast with the vigor, innovation, and multiplicity of services of the world of the Internet.”

DVB, 2000
The DVB Scenarios and Standards

- Satellite: DVB-S, DVB-S2
- Cable: DVB-C
- Terrestrial: DVB-T, DVB-T2
- DVB-MHP (Multimedia Home Platform) – middleware tools allowing to use a single set-top box for all services and applications (hardware abstraction)
- Portable: DVB-H
- ...

Audiovisual Communications, Fernando Pereira
DVB-S: Adoption …
HFC (Hybrid Fiber and Cable) Network
Cable TV versus IPTV … Push versus Pull …
DVB-C: Adoption …
DVB-T: Adoption ...
DVB Technologies
The DVB Specifications

The DVB specifications – also ETSI standards – define all the modules in the television delivery chain which need a normative specification; this is made using available standards defined by other standardization bodies or developing new (DVB) specifications.

The main modules specified are:

- **Audio and Video Source Coding** - MPEG-2 Audio and MPEG-2 Video are adopted; later also H.264/AVC has been adopted

- **Synchronization and Multiplexing** - MPEG-2 Systems is adopted

- **Channel Coding**

- **Modulation**

- **Conditional Access**
Source Processing: MPEG-2 Standards

Program 1 → MPEG-2 Encoder → Multiplexing + Encryption

Program N → MPEG-2 Encoder

Audio and Video → MPEG-2 Decoder → Demultiplexing + decryption

Note: No encryption is specified in MPEG-2 standards.
The Channel .. After the Source!

Program 1

MPEG-2 encoder

Multiplexing + encryption

Channel encoder (FEC)

Modulation

Conversion + amplification

Cable

Satellite

Terrestrial

Program n

MPEG-2 encoder

Multiplexing + encryption

Channel encoder (FEC)

Modulation

Conversion + amplification

Cable

Satellite

Terrestrial

MPEG-2 decoder

Demultiplexing + decryption

Channel decoder (FEC)

Demodulation

Conversion + amplification

Video

Audio

Audiovisual Communications, Fernando Pereira
MPEG-2 Standard
Generic Coding of Moving Pictures and Associated Audio

Audio and video coding for high quality transmission and storage, e.g. high and medium definition television.

- The ISO/IEC MPEG-2 Video standard is a joint development with ITU-T where it is designated as Recommendation H.262.

- The MPEG-2 standard should have covered audiovisual coding up to 10 Mbit/s, leaving to MPEG-3 the higher rates and higher definition. However, since the MPEG-2 standard addressed well the HDTV space, MPEG-3 was never defined and MPEG-2 lost its upper bitrate limit.
MPEG-2: The Service Model

Source → Delivery → Demultiplexer → Video, Audio, Interaction
MPEG-2: Applications

- More channels due to the more efficient usage of the available bandwidth (mainly determined by coding and modulation)
- Cable, satellite, terrestrial digital TV
- HDTV, Stereoscopic TV
- *Pay per view, Video on demand, Tele-shopping*
- Games
- Storage, p.e. DVD
- High quality personal communications
MPEG-2: Which Advantages?

- Offers more channels, e.g. thematic channels, regional channels
- Offers various angles of visualization, e.g. in the transmission of music or sports
- Introduction of high definition television
- Introduction of stereoscopic television
- Offers a large variety of television related services, e.g. VOD
- Releases bandwidth allocated to terrestrial TV, notably for the expansion of mobile networks
MPEG-2 Standard: Organization

- **Part 1 - SYSTEMS** – Specified the multiplexing, synchronization and protection of coded elementary bitstreams (audio, video and data).
- **Part 2 - VIDEO** – Specifies the coded representation of video signals.
- **Part 3 - AUDIO** - Specifies the coded representation of audio signals.
- **Part 4 – CONFORMANCE TESTING** – Specifies compliance tests for decoders and streams.
- **Part 5 – REFERENCE SOFTWARE** – Includes software implementing the technical specification parts.
- **Part 6 - DSM-CC (Digital Storage Media – Command Control)** - Specifies user management and control protocols; they constitute and extension of the Systems parts.
MPEG-2 Standard

Part 1: Systems
MPEG-2 Systems: Objective

MPEG-2 Systems has the basic objective to combine and synchronize one or more coded audio and video bitstreams in a single multiplexed bitstream.

The main objectives of this standards regard:

- Multiplexing of various streams, e.g. audio and video from one program or several programs together
- Synchronization between streams, e.g. audio and video from one program or several programs
Synchronization

DTS - Decoding Time Stamp
PTS - Presentation Time Stamp
SCR - System Clock Reference (SCR)
STC – System Time Clock
MPEG-2 Systems: Basic Architecture

- **Video Encoder**
 - Video Data

- **Audio Encoder**
 - Audio Data

- **Packetizer**
 - PES Video
 - PES Audio

- **PS**
 - Program Stream

- **MUX**
 - Transport Stream

- **TS**
 - MPEG-2 Systems

Audiovisual Communications, Fernando Pereira
Packetized Elementary Streams (PESs) & Packet Syntax

The audio and video coded elementary streams are divided into variable length packets - *the packets* – creating the so-called *Packetized Elementary Streams* (PESs), as for MPEG-1 Systems.

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>packet start code prefix</td>
<td>24</td>
<td>PES packet start code prefix</td>
</tr>
<tr>
<td>stream id</td>
<td>8</td>
<td>PES packet id</td>
</tr>
<tr>
<td>PES packet length</td>
<td>16</td>
<td>PES packet length</td>
</tr>
<tr>
<td>optional PES HEADER</td>
<td></td>
<td>PES packet optional fields</td>
</tr>
<tr>
<td>stuffing bytes (FF)</td>
<td>M*8</td>
<td>PES packet data bytes</td>
</tr>
<tr>
<td>PES packet data bytes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PES scrambling control**: 10 bits
- **PES priority**: 2 bits
- **data alignment indicator**: 1 bit
- **copyright**: 1 bit
- **original or copy**: 1 bit
- **7 flags**: 7 bits
- **PES header data length**: 8 bits

P.E. MPEG-1 or MPEG-2 Audio or Video
Program Stream and Transport Stream

• **Program Stream:**
 - Stream with a single time base for all multiplexed streams
 - Adequate for transmission and storage in channels virtually without errors ($\text{BER} < 10^{-10}$), e.g. CD-ROM, DVD, hard disks
 - Variable length packets as for MPEG-1 Systems

• **Transport Stream:**
 - Stream may include several time bases to combine programs with different time bases; however, each PES may have a single time base
 - Adequate for transmission in error prone channels ($\text{BER} > 10^{-4}$), e.g. broadcasting
 - Packets with a fixed length of 188 bytes
Decoding Program Streams …

MPEG-2 Program Stream → Medium specific decoder

Program Stream decoder → Video decoder

Program Stream decoder → Clock control

Program Stream decoder → Audio decoder

Decoded video

Decoded audio
MPEG-2 Program Streams are similar to MPEG-1 Systems streams.
Decoding Transport Streams ...

Data Link specific decoder

MPEG-2 Transport Stream with 1 or more programs

Transport Stream demultiplex and decode

Video decoder

Clock control

Audio decoder

Decoded video

Decoded audio
Transport Stream Syntax

Transport packet stream

- header
- payload

Packet header

- sync byte
- transport error indicator
- transport unit start indicator
- transport priority
- PID
- transport scrambling control
- adaptation field control
- continuity counter
- adaptation field
- payload

8 1 1 2 1 13 2 4

PID – Packet Identifier

Audiovisual Communications, Fernando Pereira
In order a user may find the elementary streams he/she needs in a MPEG-2 Transport Stream, e.g. audio and video for RTP 2 or SIC, some auxiliary data is needed!
Program Specific Information (PSI)

*Program Specific Information (PSI) is delivered in the *transport stream* ‘showing the path in the labyrinth’.*

- PSI is carried using 4 tables
- Each table is repeated many times (in a *carrousel*), e.g. 10-50/s, and corresponds to a different PID
- Tables are only applicable to Transport Streams
- A common syntax is defined to segment and carry the tables in Transport Packets
- The syntax allows a clean and backward compatible strategy to possibly extend the current standard with new tables, both standardized or privately (e.g. DVB) defined
Transport Stream PSI Tables

- **Program Association Table (PAT)** – Corresponds to PID 0x00 and it is mandatory; it contains the PIDs for the PMTs corresponding to each program in this transport stream; it also contains the PID for the NIT.

- **Program Map Table (PMT)** – Each PMT indicates the PIDs corresponding to the elementary streams for each program; it is always on the clear even if the programs are encrypted.

- **Conditional Access Table (CAT)** – Corresponds to PID 0x01 and it contains the PIDs, e.g. corresponding to the DVB tables with the access keys for the encrypted programs.

- **Network Information Table (NIT)** – Information about the network, e.g. the frequency for each RF channel (only the syntax is defined in MPEG-2).
Program Association Table (PAT)

- Mandatory table for each transport stream
- Delivered in the packets with PID = 0
- Indicates for all programs present in this transport stream, the relation between the program number (0 - 65535) and the PID of the packets transporting the map of that program, this means the Program Map Table
- The PAT is always sent without protection even if all programs in the transport stream are protected
Program Map Table (PMT)

• Provides detailed information about a specific program

• Identifies the packets (PID) transporting the audio and video elementary streams associated to the program it refers

• Identifies the PID for the packets transporting the temporal references associated to the relevant program clock (SCRs)

• May be enhanced with a set of descriptors (standard or user specified), e.g.
 - Video coding parameters
 - Audio coding parameters
 - Language identification
 - Conditional access information
Relation between PAT and PMT

PID 0x0000

PAT
- Table ID: 0x00
- P0: PID NIT
- **Prog 1: PMT_PID0x0500**
 - P2: PID PMT2
 - P3: PID PMT3
 - Pn: PID PMTn

1 for each program

PMT
- Table ID: 0x02
- PID MPEG2 video
- PID MPEG2 audio
- PID ES3 TXT
- PID ECM
- PID PCR

PID 0x0500

Audiovisual Communications, Fernando Pereira
Network Information Table (NIT)

- Optional table with private content, i.e. its content is defined by the user and is not standardized by MPEG

- Should provide information about the physical network, e.g.
 - Channel frequencies
 - Satellite details
 - Modulation characteristics
 - Service provider
 - Alternative available networks

- When present, the PID for the NIT is contained in the PAT program zero.
Conditional Access Table (CAT)

- Mandatory whenever there is, at least, one elementary stream in the transport stream which is protected

- Provides information about the used protection system (scrambling)

- Identifies the PIDs for the packets transporting the conditional access management and authorization information

- Its format is not specified by the MPEG-2 standard since it depends on the used protection mechanism which is typically operator dependent
Relation between PSI Tables...
DVB Service Information (SI) Tables

DVB specifies additional tables which, among other things, allow the receiver to automatically configure itself and the user to navigate using an electronic program guide (EPG).

- **Service Description Table (SDT)** – Includes the names and parameters for the services in the multiplexed stream.

- **Event Information Table (EIT)** – Includes information related to events (current and future) in the same stream or in other multiplexed streams.

- **Time and Date Table (TDT)** – Allows to update the internal clock of the set-top box.

- **Bouquet Association Table (BAT)** – Allows to group services in bouquets; one program may be part of one or more bouquets.

- **Running Status Table (RST)** – Serves to update the situation of some events.

- **Stuffing Table (ST)** - Serves to substitute tables that became invalid.
EPG: Program Timelining
Zappping or Filtering?
<table>
<thead>
<tr>
<th>Description</th>
<th>Sports:</th>
</tr>
</thead>
<tbody>
<tr>
<td>undefined content</td>
<td>sports (general)</td>
</tr>
<tr>
<td>Movie/Drama:</td>
<td>special events (Olympic Games, World Cup etc.)</td>
</tr>
<tr>
<td>movie/drama (general)</td>
<td>sports magazines</td>
</tr>
<tr>
<td>detective/thriller</td>
<td>football/soccer</td>
</tr>
<tr>
<td>adventure/western/war</td>
<td>tennis/squash</td>
</tr>
<tr>
<td>science fiction/fantasy/horror</td>
<td>team sports (excluding football)</td>
</tr>
<tr>
<td>comedy</td>
<td>athletics</td>
</tr>
<tr>
<td>soap/melodrama/folkloric</td>
<td>motor sport</td>
</tr>
<tr>
<td>romance</td>
<td>water sport</td>
</tr>
<tr>
<td>serious/classical/religious/historical movie/drama</td>
<td>winter sports</td>
</tr>
<tr>
<td>adult movie/drama</td>
<td>equestrian</td>
</tr>
<tr>
<td>reserved for future use</td>
<td>martial sports</td>
</tr>
<tr>
<td>user defined</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>News/Current affairs:</td>
<td>user defined</td>
</tr>
<tr>
<td>news/current affairs (general)</td>
<td>Children's/Youth programmes:</td>
</tr>
<tr>
<td>news/weather report</td>
<td>children's/youth programmes (general)</td>
</tr>
<tr>
<td>news magazine</td>
<td>pre-school children's programmes</td>
</tr>
<tr>
<td>documentary</td>
<td>entertainment programmes for 6 to 14</td>
</tr>
<tr>
<td>discussion/interview/debate</td>
<td>entertainment programmes for 10 to 16</td>
</tr>
<tr>
<td>reserved for future use</td>
<td>informational/educational/school programmes</td>
</tr>
<tr>
<td>user defined</td>
<td>cartoons/puppets</td>
</tr>
<tr>
<td>Show/Game show:</td>
<td>reserved for future use</td>
</tr>
<tr>
<td>show/game show (general)</td>
<td>user defined</td>
</tr>
<tr>
<td>game show/quiz/contest</td>
<td></td>
</tr>
<tr>
<td>variety show</td>
<td></td>
</tr>
<tr>
<td>talk show</td>
<td></td>
</tr>
<tr>
<td>reserved for future use</td>
<td></td>
</tr>
<tr>
<td>user defined</td>
<td></td>
</tr>
</tbody>
</table>
MPEG-2 Standard

Part 2: Video
The following quality objectives have been initially defined:

- **Secondary distribution** – For broadcasting to the users, the signal quality at 3-5 Mbit/s must be better, or at least similar, to the quality of available analogue systems, i.e. PAL, SECAM and NTSC.

- **Primary distribution** – For contribution, e.g. transmission between studios, the signal quality at 8-10 Mbit/s must be similar to the quality of Recommendation ITU-R 601 (using PCM).
Better Encoders for the Same Decoders ...

Bit rate required for constant broadcast quality

MPEG-2 Video

Reproduced with the kind permission of TANDBERG Television

Audiovisual Communications, Fernando Pereira
MPEG-2 Video: the Quality

The quality requirements depend on the application (thus type of content) and are strongly related to

- Resolution (in space and time) of the video signal
- Bitrate available (and thus compression factor)

Other important requirements related to quality:

- Quality robustness of the coding scheme to sudden changes of the signal statistics, e.g. scene changes
- Quality robustness to cascading this means successive coding and decoding processes
MPEG-2 Video: Requirements

- Large range of spatial and temporal resolutions, both in progressive and interlaced formats
- Several chrominance subsampling formats, e.g. 4:4:4, 4:2:2 and 4:2:0
- Flexibility in terms of bitrates, constant or variable
- Special modes, e.g. random access for edition and channel hoping, fast modes, conditional access, and easy transcoding to MPEG-1 Video, H.261 and JPEG
- Flexibility in adapting to different transmission and storage channels, e.g. in terms of synchronization and error resilience
The compatibility among standards allows to offer some continuity regarding the already available standards – JPEG, H.261, MPEG-1 Video – providing some interoperability between the various applications.

Two main types of compatibility are relevant:

- **Backward compatibility** – A MPEG-2 Video decoder is able to decode a coded bitstream compliant with a previously available standard.

- **Forward compatibility** – A decoder compliant with a previously available standard, e.g. MPEG-1 Video, is able to, totally or partially, decode in a useful way a bitstream compliant with MPEG-2 Video.

MPEG-2 Video foresees some compatibility mechanisms with MPEG-1 Video (intrinsic to the MPEG-2 Video syntax) and H.261 (using spatial scalability).
The complexity assessment of the encoders and decoders is essential for the adaptation to the technological constraints and adoption by the market.

- **Assymmetric Applications** – For the ‘one encoder, many decoders’ type of applications, it is possible to develop high quality encoders even if at the cost of additional complexity since the overall system cost is mainly related to the decoders which should have a reduced complexity (and cost).

- **Symmetric Applications** – For the ‘one to one’ type of applications, both the encoders and decoder should have a reasonable (low) complexity.

The complexity of a codec is assessed based on parameters such as memory size to contain the reference images, required access to memory speed, number of operations per second, size of coding tables and number of coding table accesses per second.
The video data is organized in a structure with 5 hierarchical layers:

- **Sequence**
- **Group of Pictures (GOP)**
- **Picture**
- **Slice**
- **Macroblock (MB)**
- **Block**
MPEG-2 Video: the Coding Tools

- **Temporal Redundancy**

 Predictive coding: temporal differences and motion compensation (uni and bidirectional; ½ pixel accuracy)

- **Spatial Redundancy**

 Transform coding (DCT)

- **Statistical Redundancy**

 Huffman entropy coding

- **Irrelevancy**

 DCT coefficients quantization

Audiovisual Communications, Fernando Pereira
The main differences between the MPEG-1 Video and MPEG-2 Video standards are related to:

- **INTERLACING** - Coding of interlaced video content with MPEG-2 Video (which is not possible with MPEG-1 Video)

- **SCALABILITY** - Availability of scalable coding in MPEG-2 Video (only temporal scalability with the I/P/B structure is possible with MPEG-1 Video)
MPEG-2 Video

Interlaced Coding
TV World: Progressive and Interlaced

Progressive frame

Odd field

Even field

![Progressive frame and fields diagram](image)
To more efficiently code interlaced content, MPEG-2 Video classifies each coded picture as:

- **Frame-Picture** - The MBs to code are defined in the frame resulting from the combination of the 2 fields (top and bottom)

- **Field-Pictures** - The MBs to code are defined within each of the fields (top or bottom) which are independently processed
Main Prediction Modes

- **Frame Mode for Frame-Pictures** – Similar to MPEG-1 Video, frames are coded as I, P or B frames with current and prediction MBs defined in the frames; gives good results for content with low or moderate motion or pannings over detailed backgrounds.

- **Field Mode for Field-Pictures** – Conceptually similar to the previous mode but now with the MBs defined within each field and the predictions also coming from a single field, top or bottom (not necessarily with the same parity).

- **Field Mode for Frame-Pictures** – Each MB in the frame-picture is divided in the pixels corresponding to the top and bottom fields; than, predictions are made for 16×8 matrices from one of the fields of the reference pictures.

- **16×8 Blocks for Field-Pictures** – A motion vector is allocated to each half of each MB for each field.
Frame-Pictures: Frame Mode and Field Mode

- Frame Mode
- Field Mode

- 16 lines per frame
- 8 lines per field

Legend:
- : line in 1st field
- : line in 2nd field

Frame coding
Field coding
For frame-pictures, the vertical correlation is reduced for the pictures with more motion. Thus, it is possible to use another scanning order – ALTERNATE order – where the DCT coefficients corresponding to the vertical transitions are privileged in terms of scanning order.
MPEG-2 Video

Scalable Coding
Scalable Coding: the Definition

Scalability is a functionality regarding the useful decoding of parts of a coded bitstream, ideally

i) while achieving an RD performance at any supported spatial, temporal, or SNR resolution that is comparable to single-layer (non-scalable) coding at that particular resolution, and

ii) without significantly increasing the decoding complexity.
Scalable Hierarchical Coding

- Base layer
- 1st enhancement layer
- 2nd enhancement layer
- 3rd enhancement layer
Scalability Types

Temporal: change of frame rate

Spatial: change of frame size

Fidelity: change of quality (a.k.a. SNR)
Alternatives to Scalable Video Coding

- **Simulcast**
 - Simplest solution
 - Code each layer as an independent stream
 - Incurs increase of rate

- **Stream Switching**
 - Viable for some application scenarios
 - Lacks flexibility within the network
 - Requires more storage/complexity at server

- **Transcoding**
 - Low cost, designed for specific application needs
 - Already deployed in many application domains
For each spatial resolution (except the lowest), the scalable stream asks for a bitrate overhead regarding the corresponding alternative non-scalable stream, although the total bitrate is lower than the total simulcasting bitrate.
Scalable Coding Types: Spatial Scalability

- **SPATIAL SCALABILITY** – The original video signal is scalable coded with several spatial resolution layers.
Scalable Coding Types: Quality Scalability

- **QUALITY (SNR) SCALABILITY** – Special case of spatial scalability where the spatial resolution is kept the same between layers (base and enhancement); the enhancement layers contain the data produced after the requantization of the residual signal between the original signal and the previous layer decoded signal.
Temporal and Frequency Scalability

• **TEMPORAL SCALABILITY** – The original signal is coded with 2 or more layers with increasing temporal resolution; an example, is also the coding of the interlaced signal in two layers where one layer corresponds to the top field and the other layer to the bottom field. **Temporal scalability is already provided by the temporal I,P,B prediction structure.**

• **FREQUENCY SCALABILITY** (designated *data partitioning* in MPEG-2 Video) – The coded information is structured in layers corresponding to subsets of DCT coefficients with increasing frequency; in the specific case of MPEG-2 Video, the partition is made in two layers.

Hybrid scalability combines two types of scalability in three or more scalable layers.

Audiovisual Communications, Fernando Pereira
Combining the Coding Tools ...
A video sequence (interlaced or progressive) is represented, in a scalable way or not, as a succession of GOPs including pictures coded as frames or fields and classified as I, P or B, structured in macroblocks, each of them represented using motion vectors and/or DCT coefficients, following the constraints imposed by the picture coding type.
MPEG-2 Video: Encoder

Original Picture

Original Picture Store

Original Picture Images

Original Picture +

DCT

Coding Control

Q

VLC

Buff

IQ

IDCT

MC Predictor/Interpolator

Bi-Directional Motion Estimator

Prev. Future Coded Frames

Bit Stream Compressed Video

Audiovisual Communications, Fernando Pereira
MPEG-2 Video: Decoder

Buffer → VLC Decoder → IQ → IDCT → Images

Coding Decisions

MC Predictor/Interpolator

Bitstream

Motion Vectors

Previous Future Frames

To display

Audiovisual Communications, Fernando Pereira
MPEG-2 Video Syntax

- Sequence Layer
- Group of Frames Layer
- Picture Layer
- Slice Layer
- Macroblock Layer
- Block Layer

= Fixed Length Code
MPEG-2 Video

Profiles and Levels
MPEG-2 Video: Very Big or Just Enough?

- MPEG-2 Video is already a big standard!
- The MPEG-2 Video tools address many requirements from several application domains.
- Some tools are very likely useless in certain application domains.

It is essential to define adequate subsets of tools in terms of functionalities and complexity!
The profile and level concepts were first adopted by the MPEG-2 Video standard and they provide a trade-off between:

- **Implementation complexity** for a certain class of applications
- **Interoperability** between applications

while guaranteeing the necessary compression efficiency capability required by the class of applications in question and limiting the codec complexity and associated costs.

- **PROFILE** – Subset of coding tools corresponding to the requirements of a certain class of applications.
- **LEVEL** – Establishes for each profile constraints on relevant coding parameters, e.g. bitrate and memory
MPEG-2 Video: the Profile and Level Hierarchies

Some profiles are syntactically hierarchical this means one profile is syntactically a superset of another and so on.

For a profile, the syntactic elements do not vary with the level, just the parametric constraints.

Also the levels may be hierarchical meaning that the constraints become less strict for higher levels, e.g. bitrate increases.

Compliance points for decoder and bitstreams correspond to a profile@level combination.
Levels

Profiles

Simple Main SNR Spatially Scalable High

Audiovisual Communications, Fernando Pereira
Some MPEG-2 Video Profiles and Levels

<table>
<thead>
<tr>
<th>Levels</th>
<th>Profiles</th>
<th>1920×1152 pixels</th>
<th>1920×1152 pixels (960×576) 100(80.25) Mbit/s</th>
<th>1440×1152 pixels (720×576) 60(40.15) Mbit/s</th>
<th>1440×1152 pixels (720×576) 80(60.20) Mbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>high level</td>
<td></td>
<td>1920×1152 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high-1440</td>
<td></td>
<td>1440×1152 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>level</td>
<td></td>
<td>720×576 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>main level</td>
<td></td>
<td>720×576 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>low level</td>
<td></td>
<td>720×576 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td>simple profile</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>profiles</td>
<td>main profile</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SNR scalable</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spatial scalable</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>high profile</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(main profile,</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>without B-pictures)</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(SNR profile,</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ SR scalability)</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ spatial</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scalability)</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 4:2:2 coding)</td>
<td>352×288 pixels</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If an encoder produces a bitstream which is over, even if only slightly, the predefined limits for a certain profile and/or level, than it is classified with the profile or/and level immediately above (to guarantee decoding).

If the decoding capabilities of a decoder are below, even if only slightly, from those predefined for a certain profile and/or level, than it is classified with the profile and/or level immediately below (to guarantee decoding).

This type of classification is important for the deployment and the homologation of MPEG-2 Video content and decoders!
MPEG-2 Video in DVB

- **Standard Definition TV (SDTV) uses MP@ML**
 - Frame rate - 25 or 30 Hz
 - Aspect ratio - 4:3, 16:9 or 2.21:1
 - Spatial resolution - (720, 576, 480) × 576 or 352 × (576, 288) or (720, 640, 544, 480, 352) × 480 or 352 × 540
 - Chrominance subsampling - 4:2:2 or 4:2:0

- **HDTV uses MP@HL**
 - Frame rate - 25, 50 or 30 e 60 Hz
 - Aspect ratio - 16:9 or 2.21:1
 - Spatial resolution - 1152 rows per frame at most and 1920 luminance samples per row at most
 - Complexity: 62 688 800 luminance samples per second at most
MPEG-2 Standard

Part 3: Audio
Audio in MPEG-2: Objective

Efficient high quality audio coding targeting the broadcasting and storage of TV or TV like signals.

There are two parts in the MPEG-2 standard specifying audio codecs:

- **Audio (Part 3)** – Codes up to 5 channels + 1 low frequency channel with high quality, at 384 kbit/s or less per channel, using the following additional sampling rates: 16, 22.05 and 24 kHz; offers backward and forward compatibilities with MPEG-1 Audio, thus the name of **MPEG-2 Audio Backward Compatible** (BC).

- **Advanced Audio Coding (Part 7)** – Gives up on any compatibility with MPEG-1 Audio, increasing its rate-distortion performance – higher quality for the same rate; codes 1 to 48 canais, with sampling rates from 8 to 96 kHz); it was initially designated as **MPEG-2 Audio Non-Backward Compatible** (NBC), now **Advanced Audio Coding** (AAC).
There are two main technical innovations in MPEG-2 Audio (BC or Part 2) regarding MPEG-1 Audio:

• Lower sampling frequencies (MPEG-2 Audio LSF): adding 16, 22.05 and 24 kHz to 32, 44.1 and 48 kHz
 - Motivated by the increase of low data rate applications over the Internet, it has the main goal to achieve MPEG-1 Audio or better audio quality at lower data rates using a lower bandwidth

• Multichannel coding
 - Motivated by the need to increase the user experience, notably with HDTV.

 The three MPEG-1 Audio layers with different complexity-performance tradeoffs are again defined in MPEG-2 Audio Part 2.
The 5.1 multichannel configuration includes 5 full bandwidth channels and a low frequency enhancement (LFE) channel covering frequencies below 200 Hz (less than 10% of the full bandwidth).
MPEG-2 Audio: the Secret!
MPEG-2 and MPEG-1 Audio Compatibility

Compatibility is provided through a MPEG-1 Audio compliant stereo pair and additional MPEG-2 Audio compliant data for the other channels.
MPEG-1/2 Audio in DVB

- All DVB audio decoders use MPEG-1 Audio, Layers 1 and 2, or MPEG-2 Audio Part 3 (BC), Layers 1 and 2.

- For MPEG-1 Audio, it is recommended to use Layer 2.

- Due to backward compatibility, it is possible to recover, with a MPEG-1 Audio decoder, a stereo pair from a multichannel MPEG-2 Audio BC coded bitstream (through downmixing).

- Sampling frequencies: 32, 44.1 and 48 kHz.
New Systems and … Business Models …

iPod is able to play the following audio formats: MP3, WAV, AAC, Protected AAC, AIFF and Apple Lossless.
Technologies Developed by DVB
Channel Coding
The Channel!

Program 1
MPEG-2 encoder

MPEG-2 encoder

Multiplexing + encryption

Channel encoder (FEC)

Modulation

Conversion + amplification

Cable Satellite Terrestrial

Conversion + amplification

Video
MPEG-2 decoder

Demultiplexing + decryption

Channel decoder (FEC)

Demodulation

Audio

Audiovisual Communications, Fernando Pereira
Channel Coding

- At sender, additional redundancy is included in the compressed signal in order to allow the channel decoder the detection and correction of channel errors.

- The introduction of added redundancy results in a bitrate increase. The channel coding selection must consider the channel characteristics and the modulation.

- The compressed signal needs a channel with a small amount of (RESIDUAL) errors, e.g. BER of 10^{-10}-10^{-12} which means 0.1-1 erred bits per hour for a rate of 30 Mbit/s.
DVC Channel Coding Tools

Symbols with source data

<table>
<thead>
<tr>
<th>FEC Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
</tr>
<tr>
<td>k</td>
</tr>
<tr>
<td>n</td>
</tr>
</tbody>
</table>

R = m/n = 1 – k/n

Block codes

FEC – Forward Error Correction

Convolutional codes

R = m/n – Coding rate, e.g. ½, 2/3, 9/10 …
DVB Channel Coding Solutions

DVB-C Channel Coding

Source encoder \[\xrightarrow{\text{Reed Solomon}}\] Interleaver \[\xrightarrow{\text{Modulator}}\]

DVB-S and DVB-T Channel Coding

Source encoder \[\xrightarrow{\text{Reed Solomon}}\] Interleaver \[\xrightarrow{\text{Convolution encoder}}\] Puncturing \[\xrightarrow{\text{Modulator}}\]

Audiovisual Communications, Fernando Pereira
Interleaving

The interleaver does not provide error correction capabilities by itself; it rather reorganizes the symbols to have burst and bit errors more efficiently corrected when also using a channel code, e.g. a RS code.

Audiovisual Communications, Fernando Pereira
Reed-Solomon Code

- The Reed-Solomon (RS) code is a block code:
 - Allowing the detection of corrupted symbols (up to a certain limit)
 - Allowing the correction of corrupted symbols (up to a certain limit)

- Good performance for burst errors … of course, in combination with the interleaver.

- The RS code used in DVB is RS(204,188), this means 188 source bytes in each full block of 204 bytes; this implies a $\frac{16}{188} = 8\%$ overhead.

- The RS(204,188) code has the capacity to correct 8 bytes in each block; if there are more than 8 bytes corrupted in a block, the channel decoder signals the lack of capability to correct the errors in the block.
Convolutional Coding and Puncturing

- Convolutional channel coding is introduced as a complement to Reed Solomon coding.
- For every m input bits, there are n output bits, typically with a $m/n = \frac{1}{2}$ coding rate which means that the source rate is half the total rate.
- The coding rate is the ratio of the source rate to the total rate (1 when there is no channel coding).
- To improve the coding rate (to make it higher), puncturing is used which means that certain bits at the convolutional encoder output are not transmitted, reducing the overall rate.
Puncturing Example

- Source coded data:
 1 0 1 1 0 0 0 0

- Channel coded data, $\frac{1}{2}$ coding rate:
 11 10 00 01 01 11 00

- Puncturing with rate $\frac{3}{4}$ (regarding the input data to the channel encoder: $\frac{3}{4} = \frac{1}{2} \times \frac{3}{2}$); when puncturing, 4 bits in each 6 are transmitted with a YYNYYN pattern:
 11 (1)0 0(0) 01 (0)1 1(1) 00

- Transmitted data:
 11 00 01 11 00

- Reconstruction for decoding:
 11 X0 0X 01 X1 1X 00
DVB-S2: Channel Coding

- DVB-S2 (second generation of DVB specifications for satellite) uses a more complex and more powerful channel coding solution.

- The Reed-Solomon outer code in DVB-S is substituted by a BCH (Bose, Ray-Chaudhuri, Hocquenghem) code with the capacity to correct 8 to 12 bits in the block.

- The convolutional inner code in DVB-S is substituted by a LDPC (low density parity check) code.

- The overall BCH&LDPC block length is 64800 bits for applications without critical delay requirements, and 16200 bits otherwise.

- Depending on the needs, the following coding rates may be used: 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9 and 9/10.
Modulation
About Modulation …

• Factors to consider when selecting a modulation:
 - Channel characteristics
 - Spectral efficiency, i.e. how many bits are transmitted per Hertz
 - Robustness to channel distortion
 - Tolerance to transmitter and receiver imperfections
 - Minimization of requirements for interference protection

• Main basic digital modulation techniques:
 - Amplitude modulation (ASK)
 - Frequency modulation (FSK)
 - Phase modulation (PSK)
 - Combined amplitude and phase modulation (QAM)
Amplitude Modulation: ASK

The information is transmitted in the signal amplitude!
Phase Modulation: PSK

The information is transmitted in the signal phase!
QAM Modulation

The digital signal is decomposed into 2 multilevel components corresponding to two carriers I and Q; the information is transmitted in the signal amplitude and phase, simultaneously.
64-QAM Modulation Constellation …

Average Power: 42
DVB Modulations

- **DVB-S** - QPSK (low SNR and rather high available bandwidth); amplitude modulation is difficult due to the high attenuation.

- **DVB-S2** – QPSK, 8PSK, 16APSK, 32APSK (Asymmetric Phase Shift Keying, also called Amplitude and Phase Shift Keying).
 - APSK has advantages over QAM due to the lower number of possible amplitude levels, resulting in less problems with non-linear amplifiers.

- **DVB-C** – Essentially 64-QAM.

- **DVB-T and DVB-H** - Orthogonal Frequency Division Multiplex (OFDM) based on QPSK and QAM modulations (very robust to multipath effects).
DVB-S2 versus DVB-S

- The spectral efficiency depends on the selected modulation constellation and coding rate; it may vary between 0.5 and 4-5 bit/symbol.

- The 16APSK and 32APSK performances are comparable to the 16-QAM and 32-QAM performances.

- QPSK and 8PSK are typically used for television due to their constant amplitude (and higher reliability).

- DVB-S2 increases the DVB-S transmission capacity in about 30%.
DVB Systems Architecture

- Satellite
 - DVB-T (COFDM)
 - DVB-C (QAM)
 - DVB-S (QPSK)
- Terrestrial
 - Cable
 - DVB-T (COFDM)
 - DVB-C (QAM)
- DVB
 - Scrambling Key
 - Multiplexing Scrambling
 - MPEG-2 Coding
 - Video
 - Audio
 - Data
 - Demultiplexing Descrambling
 - Descrambl. Key
 - MPEG-2 Decoding
 - Data
 - Audio
 - Video

Audiovisual Communications, Fernando Pereira
DVB-T: Terrestrial Broadcasting
Digital Terrestrial TV: Requirements

- Fixed, portable and mobile reception
- Immunity to multipath effects
- Single frequency networks
- Configuration flexibility, e.g. coverage/bitrate trade-offs, configuration hierarchies
- Robustness to analogue services interferences without interfering with those services
- Easy transcoding to and from other transmission channels, e.g. satellite, cable, optical fiber
- Low cost receivers
Main DVB-T Technical Characteristics

- Many characteristics common to the DVB-S and DVB-C systems
- Inclusion of the convolutional channel coding from DVB-S
- OFDM modulation based on QPSK and QAM (very robust to multipath effects) with 2k and 8k options
- Two hierarchical layers of channel coding and modulation
- MPEG-2 Video (Main profile) and later H.264/AVC source coding
- Definition of national and regional broadcasting networks (Single Frequency Networks (SFN) and Multiple Frequency Networks (MFN))
Single Frequency Networks

While in analogue reception, the user tunes the best behaving frequency for a certain channel (from different senders), in digital SFN reception all received signals for a certain channel are in the same frequency; thus, it is important to filter the signals from the other transmitters using an antenna with an adequate radiation diagram.
Terrestrial Diffusion Interferences

Replicas with different delay!
Signal to demodulate $n-1$ Symbol n $n+1$

Delayed signal $n-5$ $n-4$

Interference between ‘distant’ symbols

Integration period

Signal to demodulate $n-1$ Symbol n $n+1$

Delayed signal $n-1$ n

Interference Sum

Interference between ‘close’ symbols

Audiovisual Communications, Fernando Pereira
One way to reduce the number of symbols which mutually interfere is to increase their duration; this can be achieved by transmitting symbols in parallel and not only sequentially; instead of a single carrier modulated at a high rate, many carriers are used, each modulated at a lower rate.

Each sub-symbol s_k may be modulated in amplitude or phase.
The sub-carriers are said orthogonal if they are uniformly spaced in frequency in a way that all other sub-carriers are zero at the central position of any specific sub-carrier which means

$$w_k = 2\pi k f_0$$

with $k=0, 1, \ldots, n-1$ where f_0 is the base frequency.
Orthogonal Frequency Division Multiplex

For orthogonal sub-carriers, multi-carrier modulation corresponds to applying the *Inverse Discrete Fourier Transform* (IDFT) to the sub-carriers in parallel, creating the so-called *Orthogonal Frequency Division Multiplex* (OFDM) modulation.
OFDM: an Example

5 bits in sequence are parallelized

Each one of the 5 bits modulates one sub-carrier during the time of 5 bits (1 symbol)

The longer is T_U, the smaller is the number of adjacent interfering symbols!

Audiovisual Communications, Fernando Pereira
OFDM Symbol: Union is Strength …
The adoption of a guard interval allows to create a time zone free of interferences between different modulated symbols received through multiple paths.

The length of the guard interval must be longer than the biggest delay corresponding to the interfering signals (and this depends on the diffusion cells).
Guard Interval: an Example

Main signal

Echo 1

Same signal arriving from another emission

Received signal

The attenuation and delay of the signal received from another emission depends on the distance between transmitters.
The COFDM (Coded OFDM or OFDM) Variants

DVB-T defines two variants for data transmission (in 8 MHz channels):

- **2k Variant** (1512 signal sub-carriers and 193 synchronization sub-carriers)
 – Solution adequate for small areas coverage; less robust to interferences,
 less complex; 224 µs/symbol; 4464 Hz between sub-carriers.

- **8k Variant** (6048 signal sub-carriers and 769 synchronization sub-carries –
 Solution adequate for large areas coverage; more robust to interferences,
 more complex; 896 µs/symbol; 1116 Hz between sub-carriers.

The modulation of each sub-carrier may be made with QPSK (2 bit/symbol),
16-QAM (4 bit/symbol) or 64-QAM (6 bit/symbol), with guard intervals of
T_s/4, T_s/8 or T_s/32, and 7.6 MHz between the extreme sub-carriers (for a 8
MHz channel).
Bitrate (Mbit/s) versus Modulation for each 8 MHz Channel …

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding rate</th>
<th>Relative length of the guard interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/4</td>
</tr>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>4.98</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>7.46</td>
</tr>
<tr>
<td></td>
<td>5/6</td>
<td>8.29</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>8.71</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1/2</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>13.27</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>14.93</td>
</tr>
<tr>
<td></td>
<td>5/6</td>
<td>16.59</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>17.42</td>
</tr>
<tr>
<td>64-QAM</td>
<td>1/2</td>
<td>14.93</td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>19.91</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>22.39</td>
</tr>
<tr>
<td></td>
<td>5/6</td>
<td>24.88</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>26.13</td>
</tr>
</tbody>
</table>

Audiovisual Communications, Fernando Pereira
Hierarchical Modulation

64-QAM hierarchical modulation allows the simultaneous diffusion of a priority stream (2 MSB bits) in QPSK and another stream (remaining 4 bits), e.g. for different programs or different resolutions.

When the transmission conditions degrade, 16 points in the 64-QAM constellation may be taken as a single point in a QPSK constellation, allowing to receive, in good conditions, at least the 2 MSB bits.
DVB-T: Excellent Mobile Reception

Reception with spatial, temporal and frequency diversity …
TV in Europe (2008)
TDT in Portugal: Evolution in Time

- TDT emissions started on the 29th April 2009; the coverage will be gradually enlarged until 2011.

- Between 2009 and 2011, there will be analog and digital simulcasting.

Audiovisual Communications, Fernando Pereira
TDT in Portugal: April and December 2009

http://tdt-portugal.blogspot.com

Audiovisual Communications, Fernando Pereira
TDT in Portugal

- TDT in Portugal will use 6 multiplexers (A, B, C, D, E e F) and Single Frequency Networks (SFN).

- Multiplexer A will transmit the free channels already with license (RTP 1, RTP 2, SIC e TVI); the fifth channel was intended for this multiplexer but plans for it were withdrawn.

- Multiplexers B to F should be for pay TV.

- Multiplexers B and C are national and Multiplexers D, E, F have partial coverage with a save zone of 80 km from the border with Spain (meaning that part of the population will not see these channels).
DVB-H,

from Handheld
The Couch-Potato Dream
TV Couch-Potatoes: a Race in Extinction?
DVB-H: the Requirements

- Targets battery constrained terminals, thus terminals where the use of available power must be very efficient.
- Targeting mobile terminals, it must allow handover this means the capability of the terminal to ‘jump’ between cells and transmitters without user impact (also DVB-T does this …).
- Must offer high robustness to errors due to multipath and high ‘human noise’.
- Must deal efficiently with multiple receiver scenarios such as indoor, outdoor, pedestrian, cars, etc., with variable speed, while simultaneously optimizing the transmission coverage.
- Must be flexible enough to be used around the world, this means with flexibility in terms of bandwidth position and range.
- Must be based on DVB-T in order to maximize the compatibility with existing DVB-T networks and terminals.
DVB-H versus DVB-T

DVB-H is largely based on DVB-T. The main DVB-H technical novelties regarding DVB-T are:

- Time slicing which is mandatory.
- DVB-H data consist in IP datagrams this means data packets in the Internet Protocol.
- Additional channel coding - Reed Solomon (255, 191) – which is optional (MPE-FEC from multi-protocol encapsulation-forward error correction).
- Additional 4k mode in addition to the DVB-T 2k and 8k modes (better compromise between mobility and network robustness in terms of echoes).
- H.264/AVC video coding which provides higher compression efficiency.

The DVB-T physical layer, e.g. OFDM, is not touched. DVB-H is backward compatible with DVB-T which means that a DVB-T terminal may receive a DVB-H transmission (at physical layer).
Time slicing is mandatory in DVB-H and consists in organizing the data transmission in ‘temporal bursts’ allowing the terminals to ‘sleep’ (in terms of reception) between the data bursts they need to receive.

For example, for 10 DVB-H channels, this solution corresponds to almost 90% battery savings (some time is required for the terminal ‘wake up’).
DVB-H: Adoption
Conditional Access
Conditional Access (CA)

- Conditional access, and thus the possibility to get payment for service, is essential for the launching of digital TV and the deployment of different business models, e.g. monthly subscription, Pay Per View (PPV), Near Video on Demand (VOD).

- The primary purpose of a CA system for broadcasting is to determine which individual receivers/ set-top box decoders shall be able to deliver particular programme services, or individual programs, to the viewers.

- The reasons why access may need to be restricted include:
 - To enforce payments by viewers who want access to particular programs or services;
 - To restrict access to a particular geographical area because of programme-rights considerations (territorial control can be enforced if the receiver has a GPS system);
 - To facilitate parental control (i.e. to restrict access to certain categories of programme).

- The CA system filters the user access to a service or program by verifying certain requirements, e.g. identification, authentication, authorization, registering, and payment.
A business model is a framework for creating economic, social, and/or other forms of value. The term business model is thus used for a broad range of informal and formal descriptions to represent core aspects of a business, including purpose, offerings, strategies, infrastructure, organizational structures, trading practices, and operational processes and policies.

- **Period Subscription** - The most popular payment system, in which the viewer subscribes to a programme service for a calendar period (e.g. one month).

- **Pay-Per-View (PPV)** - A payment system whereby the viewer can pay for individual programs rather than take out a period subscription. Pay-Per-View can work by debiting the electronic credit stored in a smart card, by purchasing smart cards issued for special programs, or by electronic banking using a telephone line to carry debiting information from the home to the bank.

- **Impulse Pay-Per-View** - Impulse Pay-Per-View requires no pre-booking. This rules out some Pay-Per-View methods, e.g. issuing smart cards for specific programs. Smart card debit or electronic banking via telephone line, both support impulse Pay-Per-View.
Conditional Access Components

To avoid non-authorized users accessing a certain program or service, a CA system involves a combination of:

- **Scrambling** – The method of continually changing the form of the broadcast signal so that, without a suitable decoder and electronic key, the signal is unintelligible.

- **Encryption** – The method of processing the continually changing electronic keys needed to descramble the broadcast signals, so that they can be securely conveyed to the authorized users, either over-the-air or on smart cards.

- **Subscriber Management System** – The business centre which issues the smart cards, sends out bills and receives payments from subscribers. An important resource of the Subscriber Management System is a database of information about the subscribers, the serial numbers of the decoders and information about the services to which they have subscribed. In commercial terms, this information is highly sensitive.
Conditional Access Technologies

- Factors to consider when selecting a Conditional Access (CA) solution:
 - Robustness to attacks
 - No need for several CA decoders
 - Cost versus complexity
 - Security of the encryption algorithm

- The *set-top boxes* include the hardware and the software necessary to select, receive, decrypt and unscramble the signals.
DVB defines a common scrambling algorithm –
Common Scrambling Algorithm (CSA).
• **EMM** – Encrypted key which ‘authorizes’ the descrambling process to the users equipped for that.

• **ECM** – Encrypted key which allows descrambling the signal (together with the service key resulting from the EMM); it is updated every 2-10 s.

ECM – Entitlement Control Message

EMM – Entitlement Management Message
DVB Common Interface (DVB-CI) between the integrated receiver-decoder (IRD) and the CA system

Note: this interface is not crossed by any secret data and the CA system may be any.
DVB Conditional Access

- The CA system is not fully specified by DVB leaving to the operators the selection of the technologies for some modules.
- Conditional access data is transmitted through the (MPEG-2 Systems) CAT and the private data packets identified by the PMT.
- DVB defines a common scrambling algorithm – *Common Scrambling Algorithm (CSA)*.
- To avoid an user who wants to access programs with different CA systems to need different set-top boxes, DVB defined two types of CA solutions:
 - *Simulcrypt*
 - *Multicrypt*
• A system for allowing scrambled picture/sound signals (this means a single transport stream) to be received by decoders using different access control systems. *It is like providing multiple front doors to a large house, each with a different lock and its own door key.*

• The principle is that the different ECMs and EMMs needed for the various access control systems are sent over-air together. Any one decoder picks out the information it needs and ignores the other codes.

• Requires some agreement between the various operators using different CA systems but the same scrambling solution, e.g. DVB CSA; allows access to a program or service by any of the CA systems which is part of the agreement.

• Allows users using different CA systems visualizing the same data for the same programs, eventually using the same smart card.
MultiCrypt

- MultiCrypt is an open system which allows competition between CA system providers and Subscriber Management System operators.

- MultiCrypt uses common receiver/decoder elements which could be built into television sets. CA functions are contained in a separable module – PCMCIA – which receives the transport stream through a DVB-CI common interface.

- The Common CA Interface can be used to implement MultiCrypt. CA modules from different system operators can be plugged into different slots in the common receiver/decoder, using the common interface.

- Each set-top box may contain more than one DVB-CI slot in order to allow the connection of various CA modules, e.g. smart cards. This may require the user to manually select the CA, e.g. using different smart cards.

- This solution has the advantage that no operator agreements are needed but it is more complex and expensive; the same program has to be transmitted several times with different scramblers.
DVB Terminals
What Does a Set-top Box?

MPEG2-TS: 40 Mbit/s, e.g.:
- 6 TV
- 20 Radio
- Service Information

Audiovisual Communications, Fernando Pereira
The DVB IRDs are classified according to 5 dimensions:

- **“25 Hz” or “30 Hz”** depending if they use 25 Hz or 30000/1001 Hz (approximately 29,97 Hz) picture rates; some IRDs may be *dual-standard* which means they may accept both 25 Hz and 30 Hz video content.

- **“SDTV” or “HDTV”** depending if they are limited or nor to decode conventional resolution images (ITU-R 601); a SDTV IRD has capabilities which are a sub-set of an HDTV IRD capabilities.

- **“With digital interface” or “Baseline”** depending if they can be used for storage as with a VCR (*Video Cassette Recorder*) or not; a *Baseline* IRD has capabilities which are a sub-set of the digital interface IRD capabilities.

- **“MPEG-2 Video” or “H.264/AVC”** depending if they use one or the other video coding format.

- **Audio Coding Format**, several, e.g. MPEG-1/2 Audio (Layers 1 e 2), Dolby AC-3, and recently MPEG-4 Audio HE AAC.
Video in DVB

- **MPEG-2 Main Profile @ Main Level** is used to code SDTV with MPEG-2 Video

- **MPEG-2 Main Profile @ High Level** is used to code HDTV with MPEG-2 Video

- **H.264/AVC Main Profile @ Level 3** is used to code SDTV with H.264/AVC

- **H.264/AVC High Profile @ Level 4** is used to code HDTV with H.264/AVC

- Both the 25 Hz MPEG-2 SDTV IRDs and 25 Hz H.264/AVC SDTV IRDs use 25 Hz

- The 25 Hz MPEG-2 HDTV IRDs and the 25 Hz H.264/AVC HDTV IRDs use both 25 and 50 Hz
Audio in DVB

- The DVB audio formats are MPEG-1 Audio Layer I, MPEG-1 Audio Layer II or MPEG-2 Audio Layer II backward compatible.

- The usage of Layer II is recommended when MPEG-1 Audio is used.

- Sampling rates are 32 kHz, 44.1 kHz and 48 kHz.

- IRDs may, optionally, decode multi-channel MPEG-2 Audio Layer II backwards compatible audio (Part 2).

- The usage of MPEG-4 Audio High Efficiency AAC (HE AAC) is optional, and thus the IRDs may, optionally, decode or not these streams.
Final Remarks

• The DVB solutions for digital TV are recognized as the best, notably for mobile and portable reception.

• There are many hundreds of millions of MPEG-2 set-top boxes sold, especially in USA and Europe.

• Both Europe (DVB) and US (ATSC) decided to use the MPEG-2 Systems and MPEG-2 Video standards (unfortunately with small differences). While DVB also uses MPEG-2 Audio, ATSC uses Dolby AC-3, another audio coding format.

• Digital Video Disc (DVD) has adopted MPEG-2 standards.

Deployed digital TV is currently mostly MPEG-2 based … however, another more efficient video coding solution is quickly taking over: H.264/AVC (see next episode)!
Bibliography