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ABSTRACT 

 
Low-density parity-check (LDPC) codes are nowadays one of the 
hottest topics in coding theory, notably due to their advantages in 
terms of bit error rate performance and low complexity. In order to 
exploit the potential of the Wyner-Ziv coding paradigm, practical 
distributed video coding (DVC) schemes should use powerful error 
correcting codes with near-capacity performance. In this paper, new 
ways to design LDPC codes for the DVC paradigm are proposed and 
studied. The new LDPC solutions rely on merging parity-check nodes, 
which corresponds to reduce the number of rows in the parity-check 
matrix. This allows to change gracefully the compression ratio of the 
source (DCT coefficient bitplane) according to the correlation 
between the original and the side information. The proposed LDPC 
codes reach a good performance for a wide range of source 
correlations and achieve a better RD performance when compared to 
the popular turbo codes. 

Index Terms — Wyner-Ziv video coding, LDPC codes 

1. INTRODUCTION 

The theoretical foundations of distributed video coding (DVC), the 
Slepian-Wolf and Wyner-Ziv theorems, suggest that it is possible to 
independently encode and jointly decode two statistically dependent 
sources, X and Y, with the same performance as when the two sources 
are encoded and decoded together. In DVC, a single decoder performs 
the joint decoding of all encoded sequences, exploiting the statistical 
dependencies between them. However, to achieve such target RD 
performance in a practical DVC system, it is necessary to use 
powerful channel codes, notably the turbo and low-density parity-
check (LDPC) codes.  

The main goal of this paper is to design efficient low-density parity-
check codes for the distributed video coding (DVC) scenario. The 
LDPC codes are a class of linear block codes that can approach the 
Shannon limit quite closely [1] for several types of transmission and 
storage channels. The most important issue in the design of an LDPC 
based DVC system is the capability to extract a high number of codes 
at fine granular compression ratios (or code rates), since in the DVC 
setting it is necessary to finely adapt the LDPC code compression 
ratio to the varying statistics of the correlation noise, i.e., to the errors 
between the side information Y and the original data X. In a DVC 
scenario, the correlation noise varies significantly, depending on 
several factors, such as the motion content of the sequence and the 
efficiency of the motion estimation/compensation techniques 
employed at the decoder; therefore, a wide amplitude of compression 
ratios must be achieved while maintaining a high RD performance. 
Moreover, the high compression ratio codes must be embedded in the 
lower compression ratio codes, i.e. the bits received at lower rates 
must be useful and thus combinable with the additional bits received 
when a higher rate is further targeted. This type of codes are referred 
in the literature as rate-compatible codes and are used in solutions 
(e.g. wireless communications) where the transmission channel 
statistics vary over time and a feedback channel is available. 

Several rate-compatible strategies can be followed to obtain 
different compression ratios, such as extending, puncturing, or 
splitting. In [2,3], a practical solution is proposed where a base code is 
constructed for a high compression ratio (i.e. the minimum amount of 
bits to send); to obtain lower compression ratios, the base code is 
recursively split into two smaller codes until the necessary 
compression ratio is obtained. In [2], extended-Hamming and product-
accumulate codes are used as base codes whereas in [3], regular and 
irregular constructions are considered. In this paper, a different 
approach is proposed: a low compression ratio (equal to 1:1) LDPC 
code is first built; then, to obtain higher compression ratios, it is 
proposed to merge the parity-check nodes of the LDPC base code 
until the necessary rate is achieved. This novel approach is effective 
to obtain a wide range of compression rates and allows an effective 
optimization of the LDPC code structure, a major advantage when 
compared to previous work [2,3]. The proposed LDPC code structure 
is optimized for low compression ratios, where certain graph 
structures (e.g. cycles) can be avoided, since for high compression 
ratios it is more difficult or even impossible to condition the graph 
structure, as will be seen in Section 3. The LDPC codes considered 
here are carefully designed with a selective cycle avoidance algorithm 
[4] in order to obtain an optimized structure and take into account the 
node merging operation that will occur to obtain low rate codes. 

In the context of DVC, the most common Slepian-Wolf code is still 
the popular turbo codes. However, the LDPC code proposed in [2] for 
distributed source coding (DSC) allows higher efficiency and is being 
applied to DVC codecs, such as the DISCOVER codec [5], a state-of-
the-art solution for DVC. 

This paper is organized as follows: in Section 2, a brief overview of 
LDPC codes is presented; in Section 3, the novel techniques to design 
LDPC codes are proposed and in Section 4 the LDPC code RD 
performance is evaluated. Finally, in Section 5, some final remarks 
are drawn. 

2. LOW-DENSITY PARITY-CHECK CODES 

As illustrated in Figure 1, LDPC codes can be represented graphically 
via a bipartite graph or factor graph defined by two node types (solid 
squares and circles in Figure 1): the variable nodes (or v-nodes), 
which represent the codeword bits, and the check nodes (or c-nodes), 
which represent the parity-check equations of the code's parity-check 
matrix H with dimension m×n. The matrix H is so named because it 
performs m = n − k parity checks on a received codeword, where k 
represents the amount of data to code and n represents the total 
amount of data (of which n − k is redundant). The parity-check matrix 
H of the LDPC code is sparse, i.e., it has a low density of 1’s: wr « n 
and wc « m with wr and wc representing the number of 1’s in each row 
(c-node degree) and column (v-node degree), respectively. The v-
nodes are connected by edges to c-nodes according to matrix H. Each 
edge connecting a v-node j to a c-node i implies hij=1, where variable 
j is a component of the parity-check equation of row hi. Each of the 
parity-check equations, when multiplied by a codeword x, must fulfill 



Hx = 0, i.e. the bit values connected to the same c-node must sum to 
zero. When using LDPC codes for the general case of DSC, the most 
popular approach is to adopt the scheme suggested by Wyner in 1974 
[6], for linear binary block codes. For a certain source x, the encoder 
calculates the syndrome s = Hx (represented by dotted nodes in Figure 
1), and sends it to the decoder; the encoder code rate is, in this case, 
m/n, i.e., the compression ratio is n:m. After, the decoder constructs 
the side information y, and with the help of a correlation noise model 
between x and y, it attempts to reconstruct the source x using a belief 
propagation or maximum likelihood decoding algorithm. This type of 
approach was first used in [7] for simple codes and extended in [8] to 
the highly efficient LDPC codes. 

 
Figure 1 – LDPC syndrome code. 

Basically, in the context of LDPC codes, by calculating Hx the 
encoder maps the n-length input sequence x into one of 2n-k 
syndromes, through the division of the sequence space (with 2n 
sequence possibilities) into 2n-k cosets, each one labeled by one 
distinct syndrome. All the 2n-k cosets are disjoint and contain 2k 
codewords with maximum Hamming distance, which guarantee a 
good performance over the binary symmetric channel [8]. 

3. DESIGNING NOVEL LDPC CODES FOR DVC 

An LDPC code appropriate for the DVC scenario must fulfill three 
main requirements: i) encoding complexity: must be kept as low as 
possible in order to allow shifting most of the complexity to the 
decoder; ii) rate-compatible strategy: the code must be rate adaptive 
and incremental, i.e., the codes at higher rate should be embedded in 
the codes of lower rates, to allow a dynamic adaptation of the code 
rate by using a feedback channel; iii) compression efficiency: the code 
must have a high rate performance (ideally close to H(X|Y), the 
Slepian-Wolf limit) for a wide range of compression ratios, to cope 
efficiently with changes in the correlation between X and Y. The first 
requirement is usually met by syndrome based LDPC coding; since 
the matrix H is sparse, the encoder complexity is kept low and 
proportional to the number of edges (or 1’s) in the LDPC code. 
Regarding the requirement ii), a novel technique is proposed based on 
c-node merging to obtain a rate-compatible strategy (Section 3.1), 
instead of the c-node splitting technique used in [2,3]. The proposed 
approach has a major advantage: the LDPC high rate base code can be 
optimized instead of a low rate sub-code, allowing to use powerful 
graph conditioning techniques (e.g. [4]), which fail when applied to 
the low rate sub-code, due to their structure (low amount of rows or c-
nodes). Thus, to fulfill the requirement iii), the novel strategies to 
design the LDPC code (Section 3.2) take into account the check node 
merging technique, make a selective avoidance of cycles in both base 
and sub-codes and carefully place the variable nodes to break the error 
bursts typical in the side information. 

3.1. Rate-compatible LDPC code by check node merging 

This section proposes a technique to obtain a rate-compatible LDPC 
code by merging any two check nodes, as long as they are connected 

by a 2-degree syndrome node. When two check nodes are merged, m 
decreases by one unit, and a higher compression ratio is obtained; the 
c-nodes merging operation corresponds to the sum of two H rows. The 
technique to obtain a new (merged) check node, that contains the 
edges merged of the two old c-nodes, is quite simple, as Figure 2 
illustrates:  
1. A base code of rate = 1 is generated, corresponding to an H matrix 
of size 6×6, as shown in the Figure 2 example.  
2. Then, c-nodes are merged according to a predefined order: (c0 and 
c1) and (c4 and c5), and higher compression ratios (up to 3:2) are 
successively obtained from the same base code. The lower rate codes 
obtained are referred here as sub-codes. 

 
Figure 2 – Factor graphs when check nodes are merged. 

This method can provide an elegant way to obtain a rate adaptive 
LDPC code, since the graph structure can be adapted to obtain fine 
granular code rates; however, it does not provide a rate-compatible 
LDPC code in the sense that a set of syndrome bits cannot be 
combined with previously sent syndrome bits. To obtain this 
characteristic, it is necessary to include at the encoder, for each pair of 
c-nodes to merge, a 2-degree syndrome node, as shown in Figure 3. 

 
Figure 3 – Syndrome node placement to obtain the graph structure of 

Figure 2 (shaded nodes are punctured). 
To obtain the higher compression ratio 3:2 in Figure 2, the encoder 

sends all the syndrome bits, except s0 and s5 which are punctured. At 
the decoder, for each syndrome bit not received, the c-nodes 
connected to it are merged. Considering that 2-degree nodes represent 
equality, it can be easily proved that the punctured syndromes can be 
removed as long as their connected c-nodes are merged. At the light 
of a coset interpretation, this represents the union of two cosets, since 
there will be 2n-(k+1) cosets, each one with 2k+1 codewords. 

Although this scheme is highly flexible in the choice of the c-nodes 
to merge, to obtain a good performance for a wide range of code rates, 
it is necessary to fulfill a certain constraint: the check-node degree 
distribution of the base code and of the sub-codes must be as 
concentrated as possible, i.e. all the c-nodes should have no more than 
two different degrees and their degrees should be as similar as 
possible. This result is well known in the LDPC channel coding 
literature [9] and was confirmed in practice for LDPC syndrome 
codes. A question then arises: Which structure should be used to 
connect the syndrome nodes to the check nodes? The authors 
experimented several types of graph structures for the syndrome 
nodes, and the respective transmission orders (following the above 
criterion), all of them reaching similar performance. Thus, a simple 
structure, as shown in Figure 4, where each syndrome node is 
connected to two adjacent c-nodes, was selected. As it can be noticed, 
this structure corresponds to the accumulator used in the family of 
repeat accumulate channel codes [10], which consist of a 



concatenation of a set of repetition codes with one or more 
accumulators and an interleaver; this was also employed in [2,3]. 

 
Figure 4 – LDPC syndrome based accumulator. 

Once the syndrome nodes placement is defined, it is necessary to 
define the order by which the check nodes are merged (step 2 above). 
For the LDPC syndrome based accumulator, the transmission order is 
defined within a puncturing period Δ, which determines the minimum 
amount of rate spent in the first transmission, and the granularity of 
code rates which are incrementally obtained. The proposed algorithm 
to define the transmission order in Δ for the accumulator structure is 
described in the following: 
1. c = Δ, l = 1, send position c in each puncturing period. 
2. Send the position c/2 + i×c with i = {0, …, l-1} in each puncturing 

period. 
3. l = l×2 and c = c/2. 
4. If all positions in Δ have been sent, exit; otherwise, go back to 2. 
The l, c and i are auxiliary variables to help in the calculation of each 
position to be sent. This algorithm allows maintaining a concentrated 
check node degree distribution, each time step 2 is executed. 

3.2. Graph conditioning LDPC syndrome code 

The performance of the LDPC codes depends on several factors, such 
as the regularity nature of the graph; irregular LDPC codes can 
achieve higher bit error rate efficiency [1,8]. An LDPC code is 
irregular when the degree of the variable and check nodes is not 
constant across the code. Another important factor is the length of the 
cycles in the bipartite graph. Since the decoding algorithms, such as 
the sum-product algorithm (SPA), can achieve optimal decoding only 
in cycle-free graphs, it is natural to minimize the number of short 
cycles in the design of the LDPC code. Thus, techniques that limit the 
effect of cycles in the LDPC code performance, such as the graph 
conditioning techniques proposed in [4,11], are also necessary when 
the target is to design efficient LDPC codes for the DVC scenario. 
3.2.1. LDPC code features 
In order to design an efficient LDPC code when the novel check node 
merging technique is used to obtain a rate-compatible strategy, it is 
necessary to take into account the following features: 
1. The base code must be designed to maintain a valid structure for 

any sub-codes, i.e., no more than one edge can connect any c-
node/v-node pair. So, to guarantee valid graph structures for the 
sub-codes, the base code must follow this rule: the c-nodes to merge 
cannot have a common neighbor, i.e. the base code matrix cannot 
have ones in the same column in the rows to sum. 

2. The LDPC syndrome code can benefit if a graph conditioning 
technique is applied to the base code. In [4], the concept of stopping 
steps was proposed: a stopping set is a set of variable nodes which 
has all its neighbors connected to the set at least twice. The 
stopping sets impair the code performance when all v-nodes of the 
set are affected by errors, causing a decoding failure. Thus, it is 
proposed here to design an LDPC code base matrix (for rate = 1) 
using the greedy search algorithm ACE (approximate cycle EMD) 
[4] which increases the smallest stopping set size, to obtain better 
performance for an iteratively decoded LDPC irregular code. 

3. Simultaneously, it is also necessary to obtain good sub-codes that 
result from the parity-check node merging. However, since for high 
compression ratios the number of c-nodes is quite low and the 
number of v-nodes and edges remain constant, it is difficult or even 

impossible to apply the graph conditioning techniques for the sub-
codes. Therefore, a simpler option is to forbid certain types of 
cycles that impair the LDPC code efficiency. So, inspired by the 
relevant criteria in the literature [9], 4-length cycles that involve 
only 2-degree v-nodes are forbidden.  

4. Another important issue is the proper placement of the v-nodes. As 
shown in [9,10], low-degree v-nodes are susceptible to errors, 
because they converge slower than high degree v-nodes and can 
affect the code efficiency when a significant amount are affected by 
errors. However, their presence is necessary to have lower degree c-
nodes [9]. Considering that the low-degree v-nodes are the most 
vulnerable ones in the code, they must be placed taking into 
account the nature of the correlation noise in DVC, where the side 
information estimation in certain regions fails due to erratic motion, 
occlusions and/or illumination changes. So, quite often, error bursts 
in the side information associated to noisy regions are present. To 
improve the LDPC code capability to correct consecutive bit errors, 
it is proposed to insert periodically the high degree v-nodes (wv > 
3); this avoids that errors bursts only affect low degree v-nodes. 
While feature 1 is due to the c-node merging technique, features 2-3 

are applied for the first time to improve the performance of a LDPC 
syndrome code (for high rates), because of the rate-compatible 
strategy chosen. Finally, feature 4 takes into account the DVC virtual 
channel statistics to improve the code rate performance. 
3.2.2. LDPC code construction algorithm 
Considering the above features, and given certain global distributions, 
λ(x) and ρ(x), for the variable and check nodes degrees wc and wv, 
respectively, the algorithm proposed here to create the irregular LDPC 
base code with n×n size is the following: 
1. Generate variable nodes, one by one, starting from the low-degree 

v-nodes, according to the λ(x) and ρ(x) degree distributions, with 
random connections (edges) to the c-nodes. The v-node is accepted 
as valid if: 
a. All v-node edges do not connect more than once to a c-node in 

the base code and in the lowest rate sub-code. This guarantees 
that no multi-edges exist, i.e. two or more edges connecting a c-
node to a v-node. 

b. The ACE algorithm requirements are met, i.e., all the cycles of 
length less than a specified threshold (dACE) have ACE values 
less than ηACE; refer to [4] for more details. 

c. There are no 4-length cycles involving only 2-degree v-nodes in 
the lowest rate sub-code. 

2. The previous step is repeated until the whole parity check matrix is 
created. 

3. Check if the parity check matrix is full rank (all the rows and 
columns of H are linearly independent); otherwise, go to step 1. 
This operation is needed to guarantee that the parity check matrix is 
invertible in order to recover the original data, independently of the 
amount of errors in the side information, for rate = 1. 

4. In this last step, the placement of v-nodes (feature 4) is done. The 
algorithm consists in two steps: i) shuffling of all v-nodes with 
degree wv ≤ 3, ii) guarantee that each variable node with degree wv 
> 3 is equally spaced with a period proportional to the total number 
of v-nodes with wv > 3. 
The major advantage of the proposed LDPC design is that the code 

graph structure can be tailored for different code rates; in this case, it 
was optimized for the lowest and highest compression ratios, but 
different strategies can be applied according to the amount of 
correlation noise between the side information and the original data. 

4. EXPERIMENTAL RESULTS 

The proposed LDPC code is here evaluated in the context of a well-



known WZ video codec which follows the Stanford architecture: the 
DISCOVER codec [5]; since this is one of the state-of-the-art 
solutions in terms of WZ video codecs, it will be used here for 
comparison purposes. The two QCIF video sequences considered are: 
Hall Monitor and Foreman at 15Hz. In all the experiments, only the 
luminance data is considered for the RD performance evaluation. A 
GOP length of 2 is used. The key frames are H.264/AVC Intra 
encoded with quantization parameter values which allow having 
almost constant decoded video quality for the full set of frames (key 
frames and WZ frames). The test conditions for the DCT, quantizer, 
frame interpolation, correlation noise modeling and reconstruction 
modules are the same as in [5]. Regarding the Slepian-Wolf codec 
module, three types of channel code solutions are evaluated: 
i) Proposed LDPC code with node merging: This code was 
constructed according to Section 3.2 with λ(x) = 0.131x + 0.26x2 + 
0.187x6 + 0.115x7 + 0.08x18 + 0.227x20 and ρ(x) = 0.17x3 + 0.83x4; 
these λ(x) and ρ(x) distributions obtained from [3]. A rate-compatible 
strategy was achieved using the technique described in Section 3.1 
(node merging). For the ACE algorithm, the pair (dACE, ηACE) = (13, 7) 
was used. 
ii) DISCOVER LDPC codec: A detailed description of the LDPC 
code used in the DISCOVER codec is presented in [5] and maintains 
the same edge degree distributions as i). The rate-compatible strategy 
corresponds to the node splitting technique from [2,3]. 
iii) DISCOVER Turbo codec: It makes sense to compare the proposed 
channel code solution with a turbo code based solution since turbo 
codes also have a bit error rate performance close to the Shannon 
limit. In this case, the DISCOVER turbo encoder encloses two rate ½ 
recursive systematic convolutional encoders and an interleaver; the 
systematic bits produced by the turbo encoder are discarded while the 
parity bits are stored in a buffer and sent upon decoder request. The 
turbo decoder is composed by two soft-input soft-output decoders 
implemented using the logarithmic maximum a posteriori (Log-MAP) 
algorithm. 

Note that both i) and ii) LDPC code solutions use the log-domain 
SPA at the decoder and the inverse of H matrix is used to recover the 
original data when the compression ratio is 1:1. To detect successful 
decoding, the parity-check equations must all be satisfied and then an 
8-bit Cyclic Redundancy Check (CRC) code is then used to detect 
residual errors [5]. 

Table 1 shows for the Hall Monitor and Foreman sequences the WZ 
rate savings ∆R, in terms of percentage, of the proposed LDPC code 
with respect to the DISCOVER LDPC codec, ∆RLDPC, and 
DISCOVER Turbo codec, ∆RTurbo; only the WZ rate is considered 
since the key frames rate is the same for the three alternative channel 
code solutions. In Table 1, Qi represents the i-th WZ quantization 
matrix associated with the i-th RD point [5]; when Qi increases, the 
bitrate and quality also increases. The rate and PSNR columns in 
Table 1 correspond to the WZ RD performance obtained with the 
LDPC code proposed in this paper; as expected, the same PSNR 
values were obtained for the three alternative channel code solutions. 

As it can be observed in Table 1, the proposed LDPC code with 
node merging allows a maximum WZ rate reduction of 19.2% and 
10.2% versus the turbo code solution, for the Hall Monitor and 
Foreman sequences, respectively. When compared with the 
DISCOVER LDPC codec, the proposed LDPC solution allows WZ 
rate savings of up to 8% and 2.8%, for the Hall Monitor and Foreman 
sequences, respectively. For video sequences with higher motion 
content, like the Soccer sequence, the conclusions are similar to the 
ones drawn for the Foreman. The higher WZ rate savings are obtained 
for the Hall Monitor sequence because the proposed LDPC code 
design has a higher efficiency when the correlation between the side 
information and the original data is medium or high, i.e. for 
medium/lower compression ratios. Since the turbo code solution is 

parity bit based instead of syndrome based, the proposed LDPC code 
allows a higher WZ rate saving over the turbo code solution, as shown 
in [12] for the general DSC case. Moreover, when the correlation 
between the original data and the side information is low, the 
compression ratio in the turbo code solution can be higher than 1. 

Table 1 – WZ rate saving (in %) of the proposed LDPC code 
regarding DISCOVER Turbo code and DISCOVER LDPC code for 

the Hall Monitor and Foreman sequences. 

Qi 
Hall Monitor 

Rate [kbps] PSNR [dB] ∆RTurbo [%] ∆RLDPC [%]
1 9.77 31.53 17.0 6.5 
4 24.53 34.39 19.2 8.0 
6 39.10 35.94 18.4 7.5 
8 81.79 40.53 14.3 4.4 

Qi 
Foreman 

Rate [kbps] PSNR [dB] ∆RTurbo [%] ∆RLDPC [%]
1 22.36 28.35 10.2 2.2 
4 60.70 31.90 8.6 2.8 
6 93.53 33.16 9.8 2.0 
8 211.75 38.65 9.8 1.2 

5. FINAL REMARKS 

In this paper, a novel LDPC code was designed and evaluated in the 
context of the DVC scenario. The proposed rate-compatibility strategy 
makes use of a node merging technique and, according to the 
experimental results, leads to WZ rate savings up to 8% with respect 
to the node splitting technique. As future work, it is planned to exploit 
the memory that exists in the correlation noise between the original 
data and the side information in the decoding process. 
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